Georgia

& Value-based Deep

Tech Reinforcement Learning Metho

=l CS 4641 B: Machine Learning (Summer 2020)
N |
Miguel Morales

07/13/2020

Admin

« Homework 4 has been released. It covers the two previous lectures.
 Instructions for the Project presentation have been released. Check
Piazza for details.
» Make sure to contribute to Piazza/Lecture discussions.
« The two remaining lectures we will cover state-of-the-art deep
reinforcement learning methods.
« Grading of HW1, HW2, Project Proposal is complete.
» Course website has been updated to reflect some of these:
https://mimoralea.github.io/cs4641B-summer2020/
« Recommended Deep Learning specific courses:
» https://course.fullstackdeeplearning.com/
» https://atcold.github.io/pytorch-Deep-Learning/
» https://cs230.stanford.edu/lecture/
» http://cs231n.stanford.edu/

https://mimoralea.github.io/cs4641B-summer2020/
https://course.fullstackdeeplearning.com/
https://atcold.github.io/pytorch-Deep-Learning/
https://cs230.stanford.edu/lecture/
http://cs231n.stanford.edu/

Outline

Reinforcement Learning with Function Approximation
Deep Reinforcement Learning

Value-based Methods

Georgia
Tech

EEEEEEEEEEEEEEEE

—

Outline

Reinforcement Learning with Function Approximation

Georgia
Tech

EEEEEEEEEEEEEEEE

—

Recall the kinds of feedback RL agents learn from

BoiL IT Down

Kinds of feedback in deep reinforcement learning

Sequential
(as opposed
to one-shot)

Evaluative
(as opposed
to supervised)

Sampled
(as opposed
to exhaustive)

Supervised
Learning

v

Planning
(Chapter 3)

Bandits
(Chapter 4)

‘Tabular’
reinforcement
learning
(Chapters 5, 6, 7)

Deep
reinforcement
learning
(Chapters 8,9,10, 11, 12)

Georgia @
Tech

CREATING THE NEXT

Recall what sequential feedback is

one path looks obviously better than
the other even after several steps.

(1) Consider this environment in which | l

(2) But before the
agent can complete this
‘better—-looking” path, it
will get a high penalty.

(3) This is the challenge of sequential feedback, and one of the reasons

we use value functions to decide on actions, and not merely rewards.
Georgia
Tech

=

CREATING THE NEXT

Recall what evaluative feedback is

(1) To understand the challenge of evaluative feedback you must be aware that
agents don't see entire maps such as this one.

*)

(2) Instead, they only see the current
state and reward such as this one. |

(3) S0, is that -10 bad?

Is it good? -
Georgia &
Tech

=

CREATING THE NEXT

Recall what sampled feedback is

(1) Imagine you are feeding your agent images as states. (3) With 3 channels
. , representing the amount
h 1
(2)Eachimageis 210 4 of red, green and blue.

by 160 pixels.

— [l,ITA

(4) Each pixel in an
&-bit image can have a
value from O to 255.

(5) How many possible states is that you ask?

(6) That's (255%)210:160(16,581,375)7%°° = a ot

(7) For giggles, | ran this in Python and it returns a 242,580-digit number. To put it in perspective, the
known, observable universe has between 107° and 10%? atoms, which is an 83-digit number at most.

Georgia &
Tech|)

CREATING THE NEXT

Why using function approximation?

High-dimensional state spaces

(1) Thisis a state. | > State
Each state is a unique »[1 [O [
configuration of variables. 1 [O [
V' N
(2) For example, variables T
can be position, velocity,
target, location, pixel,
value, etc.
State < i (3) A high-dimensional state has
Ve many variables. A single image
I? I;I . l? I? frame from ATARI, for example has
|j Ij . Ij Ij 210x160x3 = 100,800 pixels.

Why using function approximation?

Continuous state spaces

(1) Thisis a state. ———p S
Each state is a JEREREEN —— (2)Variables can be
unique configuration osition, velocity
. > P ’ ’
ofvariables. I;' EREEN target, location,
T pixel, value, ete.
(3) A continuous state-space has at State
least one variable that cantake on an HEEEEEE
infinite number of values. For example, 0.0-100.0
position, angles, altitude, are variables
that can have infinitesimal accuracy: T

say, 2.1,or2.12,0r 2.123, and so on. |

Why using function approximation?

’ r5| ReFresH My MEemoRy

/7 Algorithms such as Value Iteration and Q-learning use tables for value functions

Value iteration is a method that takes in an MDP and derives an optimal policy for such MDP
by calculating the optimal state-value function, v*. To do this, value iteration keeps track of
the changing state-value function, v, over multiple iterations. In value iteration, the state-
value function estimates are represented as a vector of values indexed by the states. This
vector is stored with a lookup table for querying and updating estimates.

A state-value function

(1) A state-value function

is indexed by the state, ————— State 0 - (O
anditreturnsavalue F—V [55| 14 | 02 | 11 | 45 | 34 |
representing the expected

reward to go at the state.

The Q-learning algorithm does not need an MDP and does not use a state-value function.
Instead, in Q-learning, we estimate the values of the optimal action-value function, q*.
Action-value functions are not vectors, but, instead, are represented by matrices. These
matrices are 2-d tables indexed by states and actions.

An action-value function

) States
iy . L
Q 0 1 2 3
Actions 0 15 | -02 1.2 57
T 1 4.2 21 27 6.1
PN

An action-value function, Q, is indexed by the state and the action, and it returns a
value representing the expected reward to go for taking that action at that state.

Lo

2~ BoiL It Down

Function approximation can make our algorithms more efficient

In the cart-pole environment, we want to use generalization because it is a more efficient
use of experiences. With function approximation, agents learn and exploit patterns with less
data (and perhaps faster).

A state-value function with and
without function approximation

(1) Imagine this state-value function. V=[-25,-1.1,0.7,3.2,7.6]
(2) Without function approximation, ___o_0_ |:| oo WD
each value is independent. I:I O

0 1 2 3 4

(3) With function approximation the
underlying relationship of the states == —-—->=-=-- Value
can be learned and exploited.

(4) The benefit of using function approximation is particularly obvious if you imagine
these plots after just a single update.

(5) Without function
I:I approximation, the update
- - onlychanges one state.

(©) With function
o 1 2 3 4 approximation, the updates —5 1 2 3 a4

change multip[eﬁf/

(7) Of course, this is a simplified example, but it helps illustrate what's happening.
What would be different in ‘real’ examples?

First, if we approximate an action-value function, Q we would have to add another
dimension.

Also, with non-linear function approximator, such as a neural network, more complex
relationship can be discovered.

Value | = = = = = = = =

e Derivative-free

 Using black-box optimization methods,
such as Genetic Algorithms.

* Policy-based
» Training a policy network.
» Actor-Critic
 Training a policy and a value network.

* Value-based
 Training a value network.

 Model-based

» Training a transition and/or reward
function network.

Derivative-free

Policy-based Value-based Model-based

Learning with Function Approximation
ement Learning

\\A ods

Neural Networks

Neural networks are a biologically-inspired
programming paradigm which enables a computer to
learn from observational data.

NN allow computers to learn from experience and
understand the world in terms of a hierarchy of
concepts, with each concept defined through its
relation to simpler concepts.

The hierarchy of concepts enables the computer to
learn complicated concepts by building them out of
simpler ones.

The more the number of layers in that hierarchy, the
“deeper” the network, thus, deep learning.

Deep learning is a powerful set of techniques for
learning in deep neural networks.

Neural networks and deep learning currently provide
the best solutions to many problems in image
recognition, speech recognition, natural language
processing, and of course, reinforcement learning.

5';—‘“0

Elephants Chairs

P -
i

\f“ ”" :
T ML
1‘ L':ku\ ‘lul\—‘ -
[N

P o U \ i

WA AT
ﬂl\"j.r S

So much to learn!

A mostly complete chart of An informative chart to build

D rowcel Neural Networks rrcon Neural Network Cells

@ Backfed Input Cell ©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org ©2016 Fjodor van Veen - asimovinstitute.org
A Noisy Input Cell .]
é Y Inp! Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) o . Fixed Weight
@ Hiidden cel o - - (fixed at 1)
© Probablistic Hidden Cell 'f: . = -
05

. Spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU) - ¢ :: Weights

Qo o Qo o Qo :
. Capsule Cell

R AT
@ outputcel [

LN ,
- \'n').\'n".\ T T Recurrent Weights O
02 (grouped by colour)

. Match Input Output Cell

. Recurrent Cell Aut:Encoder (AE) VariationalAé&AE) Denoising AE (DAE) : Sparse AE (SAE) Ad d iti O n a I re S O u rce S :
~ & A - Feed Forward Cell @ . . .
= https://www.asimovinstitute.org/neural-

@ Memory cell
S network-zoo-prequel-cells-layers/

. Gated Memory Cell
~ Kernel
s

= * https://www.asimovinstitute.org/neural-
—r Sy SR network-zoo/

C) Convolution or Pool

Markov Chain (MC) Hopfield Network (HN) ~ Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

AW7A)
- 3:.22:.:;: i:’:;:’:s: - ’:’“ i) (U, sh""' il (previous iteration)
SN s v/ . g o o https://www.deeplearningbook.org/

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN) mﬁ GRU Cell ° h tt . // | t k d d I " /
o ko oxe ooy = p://neuralnetworksanddeeplearning.com
X o e ' 0
e o0 —

—/><\ - /Q\o/\ bias multiply
v e T
A A B (previous iteration)

)) : am — bias muttply

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN) .) S:.:‘s e / ‘

LSTM Cell

OO e ¢

https://www.asimovinstitute.org/neural-network-zoo-prequel-cells-layers/
https://www.asimovinstitute.org/neural-network-zoo/
https://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/

The cart-pole environment

CoNcRETE EXAMPLE

The Cart-Pole environment

The cart-pole environment is a classic in reinforcement learning. The state space is low-
dimensional but continuous, making it an excellent environment for developing algorithms;
training is fast, yet still somewhat challenging, and function approximation can help.

This is the cart-pole environment

(1) The cart-pole environment
consists of balancing a pole.

(2) The

pole is

hinged to (3) The cart can move
acart. ——g left or right along a track.

]

Its state space is comprised of four variables:

+ The cart position on the track (x axis) with a range from-2.4 to 2.4

« The cart velocity along the track (x axis) with a range from -inf to inf
« The pole angle with a range of ~-40 degrees to ~ 40 degrees

« The pole velocity at the tip with a range of -inf to inf

There are two available actions in every state:

« Action 0 applies a -1 force to the cart (push it left)
« Action 1 applies a +1 force to the cart (push it right)

You reach a terminal state if:

+ The pole angle is more than 12 degrees away from the vertical position
- The cart center is more than 2.4 units from the center of the track
« The episode count reaches 500 time steps (more on this later)

The reward function is:

+ +1for every time step

Let’'s use neural networks to solve the cart-pole environment

State-action-in-value-out architecture

State Variables In

* Cart position

« Cart velocity

* Fole angle

* Fole velocity at tip

States.Eg
[-0.1,1.1,2.3,1.1]

ActionIn | P
Actiona.E.g.:O

Value out

() Q(s.a)Eg:1.44

State-in-values-out architecture

State Variables In

* Cart position

« Cart velocity Vector of values out

- Pole angle (* Action O (left)

- Fole velocity at tip () +Action 1 (right)
Q(s) E.g:

State s. E.g: [1.44,-3.5]

[-0.1,1.1,2.3,1.1]

But what's a good objective to train on?

2e~ SHow MEe THE MATH
Ideal objective

— (1) Anideal objective in value-
based deep reinforcement
learning would be to minimize
the loss with respect to the
optimal action-value function g™

{ (2) Because we

would like to have an
estimate of g7, Q
that tracks exactly
that optimal function.

4

L L;(6;) = E, [(q*(s, a) — Q(s, a; 90)2}

L{ (3) If we had a solid estimate of g, we

(4) Obviously, 'm not talking about
having access to q*so that we can use it,
otherwise, there is no need for learning.
I'm talking about access to sampling the
q”* some way. Regression-style ML.

then could use a greedy action with
respect to these estimates to get near-
optimal behavior. Only if we had that g*

How about Q-learning?

22~ SHow MEe THE MATH
The Q-learning target, an off-policy TD target

(1) In practice, an online Q-learning target would look something like this. F——7

(2) Bottom line is we use the Q—learning =
experienced reward, and the Yy, =R+ s Q(St+1, a; ;)

next state to form the target. |

(3) We can plug in a more general
(4) But it is basically form of this Q-learning target here.
the same. We are

2
using the expectation Li(6;) = Es,a,rs [(T + n}ﬁtx Q(Sla a'; 0;) — Q(s,q; 92))]
S

of experience tuples. |

(5) To minimize the loss.

(©) Now, when differentiating
through this equation, it is
important you notice the gradient
doesn’t involve the target. |

V0¢ Lz(gz) -~ Es,a,r,s’ l:(r + a mE}XQ(SI7 CL,; 92) _ Q(S’ a; 91/)) veiQ(S7 as; 9’6)]

through the predicted value. This

(7) The gradient must only go |
is one common source of error. l

Notice our first challenge

Circular dependency of the action-value function

(1) Trace the | .
use of the Policy produces
action-value o~
function. is used to produces
calculate the

/\ Data

Action-value
function :
is used to

calculate the
are used to

calculate the

Targets

What optimization method to use?

Batch gradient descent Stochastic gradient descent

ﬁ 4— (1) With stochastic gradient
descent every iteration we step only
(1) Batch gradient through one sample. This makes it a
descent goes smoothly very noisy algorithm. It wouldn't be
towards the target

because it uses the entire surprising to see some steps taking
dataset at once, so lower us further away from the target,
variance is expected. and later back towards the target.

Mini-batch gradient descent Mini-batch gradient Descent vs Momentum

(1) Mini-batch
gradient descent
from the last image.

4—— (1) Inmini-batch gradient
descent we use a uniformly
sampled mini batch. This result
in noisier updates, but also (2) This would
faster processing of the data be momentum.

Momentum

@ MiGUEL's ANALOGY
< Optimization methods in value-based deep reinforcement learning

To visualize RMSprop, think of the steepness change of the surface of your loss function. If
gradients are high, such as when going downhill, and the surface changes to a flat valley,
where gradients are small, the moving average magnitude of gradients is higher than the

most recent gradient, therefore, the size of the step is reduced, preventing oscillations or
overshooting.

If gradients are small, such as in a near-flat surface, and they change to a significant

gradient, as when going downhill, the average magnitude of gradients is small, and the new

— SGD
gradient large, therefore increasing the step size and speeding up learning.

Momentum
NAG

- Adagrad
i,, - Adadelta
Rmsprop

KRR
OXOKS
AOOIOERESS
KD Y
EROKIERNS
&
".‘,\,\s SN
R

o
¥
>
.
’0

S
OROAX

CRSXD
"“‘

Additional readings:
o https://cs231n.qgithub.io/neural-networks-3/

1.0

https://cs231n.github.io/neural-networks-3/

NFQ: Neural Fitted Q-lteration

IT’s IN THE DETAILS
The full Neural Fitted Q-lteration (NFQ) algorithm

Currently, we have made the following selections, we:

Approximate the action-value function Q(s,a; 6).
Use a state-in-values-out architecture (nodes: 4, 512,128, 2).

Optimize the action-value function to approximate the optimal action-
value function g*(s,a).

Use off-policy TD targets (r + y*max_a’Q(s;a’; 6)) to evaluate policies.
Use an epsilon-greedy strategy (epsilon set to 0.5) to improve policies.
Use mean squared error (MSE) for our loss function.

Use RMSprop as our optimizer with a learning rate of 0.0005.

NFQ has three main steps:

1.

2.
3.

Collect E experiences: (s, a, 1, s, d) tuples. We use 1024 samples.
Calculate the off-policy TD targets: r + y*max_a’Q(s,a’; 6).
Fit the action-value function Q(s,a; 6): Using MSE and RMSprop.

Now, this algorithm repeats steps 2 and 3 K number of times before going back to step 1.
That's what makes it “fitted”; the nested loop. We'll use 40 fitting steps K.

NFQ

caleikis Fit the action-value

Collect

the off-policy Repeat _ _
E experience TD targets: K . function Q(s, a; 6)
samples r+ymax_a Qs a, 6) Times with RMSprop and MSE
_/

Learning with Function Approximation
ement Learning

\\A‘ ods

Because we are using a powerful function
approximator, we can generalize across state
action pairs, which is excellent, but that also
means that the neural network adjusts the values
of all similar states at once.

Think about this for a second, recall that our target
values depend on the values for the next state,
which we can safely assume are like the states
we are adjusting the values of in the first place.
We are creating a non-stationary target for our
learning updates. As we update the weights of the
approximate Q-function, the targets also move
and make our most recent update outdated.
Thus, training becomes unstable very quickly.

Non-stationary target

(1) At first our optimization
will behave as expected going
afterthe target. |

v

(2) The problem is that as predictions improve,

our target will improve too, and change. |_l

(3) Now, our optimization
method can get in trouble. F———p

« We are not holding the 1ID assumption and that is a Data correlated with time
problem because optimization methods assume the
samples to be independent and identically
distributed (lID).

« But we are training with almost the exact opposite:

« Samples on our distribution are not
independent because the outcome of a new
state “s” is dependent on our current state “s.”

« Samples are not identically distributed because
the underlying data generating process, which (1) Imagine we generate these data points in a single trajectory.
is our policy, is changing over time. Say the y axis is the position of the cart along the track, and

the x axis is the step of the trajectory. You can see how likely it
is data points at adjacent time steps will be similar making our
function approximator likely to overfit to that local region.

Target networks

Q-function optimization without a target network Q-function approximation with a target network

(1) At first everything will look (2) But the target will move (1) Suppose we freeze the (2) That way the optimizer can
normal. We just chase the target. as our Q-function improves. target for a few steps. make stable progress towards it.

S8 /\ — ®© — g

®

9) Then, things go bad. 4) And the moving targets 3) We eventually update 4) This allows the algorithm
glarg p g
could create divergence. the target, and repeat. to make stable progress.

®

4 AN O

Georgia “
Te%h Q

CREATING THE NEXT

Target networks equations

22~ SHow ME THE MATH
Target network gradient update

VO,' Lz(ez) — Es,a,r,s’ [(T + maXQ(SI) a',; 91) = Q(S, a; 92))V91Q(3, a; 92)]
a/

(1) The only difference between these two
equations is the age of the neural network weights. j

Vo, Li(0;) = Es g, [('r +ymax Q(s',a’;07) — Q(s, a;6:)) Vo, Q(s, 0; ‘913)]

(2) Atarget network is a previous instance of the neural network that we freeze
for a number of steps. The gradient update now has time to catch up to the
target, which is much more stable when froze. This adds stability to the updates.

Georgia @
Tech

CREATING THE NEXT

Replay buffers

=~ Boi It Down

Experience replay makes the data look IID, and targets somewhat stationary
The best solution to the problem of data not being IID is called experience replay.

The technique is very simple and it’s been around for decades: As your agent collects
experiences tuples e=(S,A,R,_ S,) online, we insert them into a data structure, commonly
referred to as the replay buffer D, such that D=fe , e, ..., e J. M, the size of the replay buffer, is
a value often between 10,000 to 1,000,000, depending on the problem.

We then train the agent on mini-batches sampled, usually uniformly at random, from the
buffer, so that each sample has equal probability of being selected. Though, as you learn on
the next chapter, you could possibly sample with some other distribution. Just beware, it is
not that straightforward, we'll discuss details in the next chapter.

Georgia ﬂ
Tech &

CREATING THE NEXT

Replay buffers equations

SHow ME THE MATH
Replay buffer gradient update

Vo,L;(0;) =E; ar,s/ (r +7maxQ(s a’;07) — Q(s, q; Hi))VgiQ(s,a; 02)]

Lq (1) The only difference between these two equations is

that we are now obtaining the experiences we use for
training by sampling uniformly at random the replay buffer

h D, instead of using the online experiences as before.

Vo, Li(6i) = Esa,r,s)Nu(’D) ("“ + HZE}XQ(S', a';07) — Q(s,a;60;)) Vo, Q(s, a; 9z‘)]

T—I (2) Thisis the full gradient update for DAN. More precisely the one referred
to as Nature DON, which is DON with a target network and a replay buffer.

Georgia @
Tech

CREATING THE NEXT

DQN: Deep Q-Networks with a Replay Buffer

DQN with a Replay Buffer

DQN Agent

Exploration
—_—
Get Q-values strategy

Q-function
Action

T £
Select i
action Environment

Train Q-function 1+

Sample Mini batch

expenenceff \\'\ Transition
Store ' J/
State

leX|c_>erience |
Replay buffer

Reward

Tech

Georgia @

CREATING THE NEXT

Training DQN in the cart-pole environment

IT’s IN THE DETAILS
The full Deep Q-Network (DQN) algorithm

Our DQN implementation has very similar components and settings to our NFQ, we:

Approximate the action-value function Q(s,a; 6).
Use a state-in-values-out architecture (nodes: 4, 512,128, 2).

« Optimize the action-value function to approximate the optimal action-
value function g*(s,a).

Use off-policy TD targets (r + gagmma*max_a’Q(s,a’; 6)) to evaluate policies.
« Use mean squared error (MSE) for our loss function.
« Use RMSprop as our optimizer with a learning rate of 0.0005.

Some of the differences are that in the DQN implementation we now:

Use an exponentially decaying epsilon-greedy strategy to improve policies, decay-
ing from 1.0 to 0.3 in roughly 20,000 steps.

« Use areplay buffer with 320 samples min, 50,000 max, and a mini-batches of 64.
Use a target network that updates every 15 steps.

DQN has 3 main steps:

1. Collect experience: (S,AR.,S,. D) and insert it into the replay buffer.

2. Randomly sample a mini-batch from the buffer and calculate the off-policy TD
targets for the whole batch: r + gagmma*max_a’Q(s;a’; 6).

3. Fit the action-value function Q(s,a; 6): Using MSE and RMSprop. Georgia @

Tech

CREATING THE NEXT

DQN overestimates the targets. This algorithm
is biased towards positive values because we
use the max all the time.

The crux of the problem is very simple: We are
taking the max of estimated values. Estimated
values are often off-center, some higher than
the true values, some lower, but the bottom line
is they are off. Now, the problem is that we are
always taking the max of these values.

DQN prefers higher values, even if they are not
correct. Meaning it shows a positive bias, and
performance suffers.

100%

75% |

% left

actions 50%;

from A

25% |

5%

Ot

N(—0.1,1)
0 0
-63 left right D
Q-learning
Double
Q-learning
———————————————————————————————————— optimal
1 100 200 300
Episodes

lllustrating the problem of overestimation

~==(1) MiGuUEL's ANALOGY
oy, The issue with over-optimistic agents, and people

| used to like super positive people until | learned about Double DQN. No, seriously,
imagine you meet a very optimistic person, let’s call her DQN. DQN is very optimistic. She’s
experienced many things in life, from the toughest defeat to the highest success. The
problem with DQN, though, is she expects the sweetest possible outcome from every single
thing she does, regardless of what she actually does. Is that a problem?

One day, DQN went to a local casino. It was the first time, but lucky DQN got the jackpot at
the slot machines. Optimistic as she is, DQN immediately adjusted her value function. She
thought, “Going to the casino is very rewarding (the value of Q(s,a) should be very high)
because at the casino you can go to the slot machines (next state s’) and by playing the slot
machines, you get the jackpot [max_a’Q(s, a')]"

But, there are multiple issues with this thinking. To begin with, not every time DQN goes to
the casino, she plays the slot machines. She likes to try new things too (she explores), and
sometimes she tries the roulette, poker, or blackjack (tries a different action). Sometimes the
slot machines area is under maintenance and not accessible (the environment transitions
her somewhere else.) Additionally, most of the time DQN plays the slot machines, she
doesn’t get the jackpot (the environment is stochastic.) After all, slot machines are called

bandits for a reason, not those bandits, the other — never mind.
Georgia /“
Tech |

CREATING THE NEXT

DDQN: What about that max?

as SHow MEe THE MATH

Unwrapping the argmax

[Vo,Li(0h) = E(sarsmucp) | (r + 7maxQ(s',a's07) — Q(s,;61)) Vo, Q(s, a;6:)|
(1) What we are doing here is something

silly. Take a look at the equations at the top
— and bottom of the box and compare them.

m@XQ(s',a';e_) < y Q(s',argmax Q(s',a’;67);607)

(2) There is no real difference between the

two equations since both are using the same
Q-values for the target. Bottom line is these
w twobits are the same thing written differently. F—

Vo,Li(0:) = Es,a,r,s)~ts(D) [(7‘ +7Q(s', argmax Q(s',a';07);07) — Q(s,a;0;)) Vp,Q(5, a; 9i)]
a/

Georgia @
Tech

CREATING THE NEXT

DDQN: Double Learning

Selecting action, evaluating action

| 4
Online network (1) The online network tells the Target network
target network:
“Ithink action 3 is the best action”
Q(s,0) =3.5 Q(s,0) = 3.8
Q(s,1) = 1.2 (2) The good thing is Q(s,1) = 1.0
_ that the target network
Q(s,2) = -2 has estimates, too. ———— | Q(s8,2) =-1.5
Q(s,3) = 3.9 5 | as3)=36

l

(3) The target network
select its estimate of action
3, whichis what the online
network recommended.

1 (4)They sort of —
cross-validate the

estimates used. i
Georgia @
Tech)

CREATING THE NEXT

DDQN equations

2s SHow MEe THE MATH
DDQN gradient update

(1) So far the gradient updates look as follows.

(2) We sample uniformly at random from
the replay buffer a experience tuple (s, a, r.s).

Vo,Li(0;) = E(s,a,r,s')~ti(D) [(7‘ +7Q(s', argmax Q(s',a’;07);07) — Q(s,a;60;)) Vy,Q(s, a; 9¢)]
a’ *

(3) We then calculate the TD target T L
and error using the target network. | (4) Finally calculate the
gradients only through the
(1) The only difference in DDQN is now we predicted values.
use the online weights to select the action,
but still use the frozen weights to get the
estimate.

L

Vo, Li(Bi) = E(syar,syaue) | (r + QL' argmax Q(s', 3 6,)567) — Q(s, 03 6,)) Vo, Q(s, a3)
al

Georgia @
Tech

CREATING THE NEXT

Training DDQN in the cart-pole environment

IT’s IN THE DETAILS
The full Double Deep Q-Network (DDQN) algorithm

DDQN is almost identical to DQN, but there are still some differences. We still:

Approximate the action-value function Q(s,a; 6).
Use a state-in-values-out architecture (hodes: 4, 512,128, 2).

Optimize the action-value function to approximate the optimal action-
value function g*(s,a).

Use off-policy TD targets (r + gagmma*max_a’Q(s,a’; 6)) to evaluate policies.

Notice that we now:

Use an adjustable Huber loss, which since we set the ‘max_gradient_norm’variable
to‘float(‘inf’);, we are effectively just using mean squared error (MSE) for our loss
function.

Use RMSprop as our optimizer with a learning rate of 0.0007. Note that before we
used 0.0005 because without double learning (vanilla DQN) some seed:s fail if we
train with a learning rate of 0.0007. Perhaps stability? In DDQN, on the other hand,
training with a higher learning rate works best.

In DDQN we are still using:

+ An exponentially decaying epsilon-greedy strategy (from 1.0 to 0.3 in roughly
20,000 steps) to improve policies.

« Areplay buffer with 320 samples min, 50,000 max, and a batch of 64.
« Atarget network that freezes for 15 steps and then updates fully.

DDAQN, just like DQN has the same 3 main steps:
1. Collect experience: (S, A, R, S,. . D,,,), and insert it into the replay buffer.
2. Randomly sample a mini-batch from the buffer and calculate the off-policy TD
targets for the whole batch: r + gagmma*max_a’Q(s,a’; 6).

3. Fit the action-value function Q(s,a; 6): Using MSE and RMSprop.

The bottom line is the DDQN implementation and hyperparameters are identical to those
of DQN, except that we now use double learning and therefore train with a slightly higher
learning rate. The addition of the Huber loss does not change anything because we are
“clipping” gradients to a max value of infinite, which is equivalent to using MSE. However,
for many other environments you will find it useful, so tune this hyperparameter.

Georgia ﬂ
Tech Q

CREATING THE NEXT

Recommended Readings

 DQN v1: https://arxiv.org/abs/1312.5602

 DQN v2: https://www.nature.com/articles/nature 14236

« DDAQN: https://arxiv.org/abs/1509.06461

* Dueling Networks: https://arxiv.org/abs/1511.06581

» Prioritized Experience Replay: https://arxiv.org/abs/1511.05952

 Rainbow: https://arxiv.org/abs/1710.02298

Georgia @
Tech

CREATING THE NEXT

https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236
https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1710.02298

Georgia &

Tech|f Thank you!

CREATING THE NEXT

(iiiiiiza

