Machine Learning CS 4641-B Summer 2020

Lecture 09. Clustering analysis and K-means Xin Chen

These slides are based on slides from Mahdi Roozbahani

Logistics

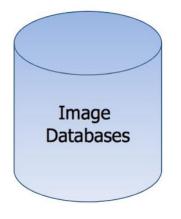
- Project proposal
 - Background & motivation
 - Why do people care?
 - More importantly, what is the existing approaches? How do you understand them?
 - Objectives:
 - Something based on the background information, what is missing? What is more important? What is your new angle?
- Writing a report/proposal
 - For any figures, plots and sentences that is not "yours", you need to clearly cite where and who it come from.
 - Do not look like this. (If you submit it to somewhere like a conference, this would be a serious issue)
 - There is a dataset: A.
 - There is a paper/link B, which is about the topic.
 - The figure says C.
 - Everything on the report is your understanding. (How is this material you cite related to yours?)
- In general, remember to start from "small" and "solid".

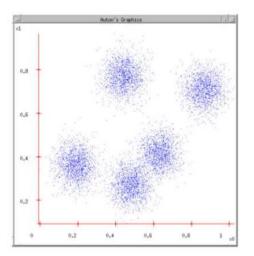
Outline

Clustering

- Distance function
- K-means algorithm
- Analysis of K-means

Clustering images





Goal of clustering: Divide objects into groups and objects within a group

are more similar than those outside the group.

Clustering other objects

Australia St. Helena & Dependencies

Anguilla South Sandwich

South Georgia & U.K. Islands

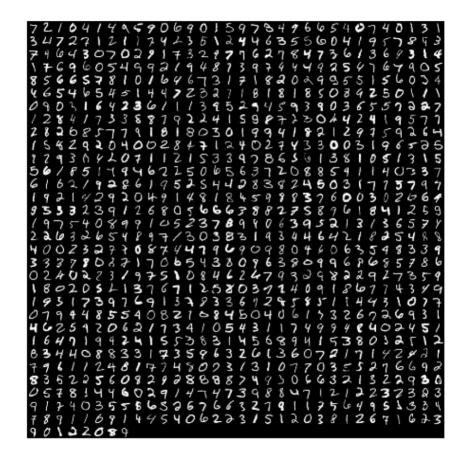
Serbia & Montenegro

France

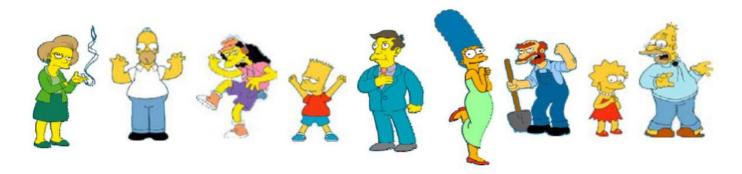
India Ireland

Linguistic Similarity

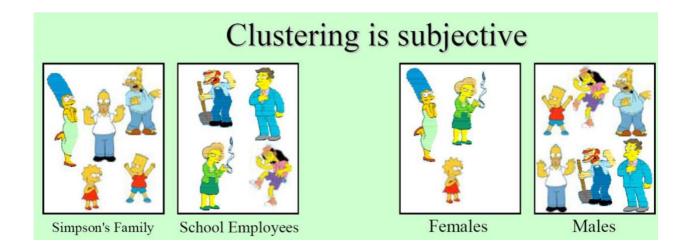
Clustering hand digits



Clustering is subjective



What is considered similar/dissimilar?



What is clustering in general?

- First we need to pick similarity/dissimilarity function?
- The algorithm figures out the grouping of objects based on the chosen dissimilarity/dissimilarity function:
 - Points within a cluster is similar
 - Points across cluster are not similar
- Issues for clustering:
 - How to represent objects? (vector space? Normalization)
 - What is similarity/dissimilarity function?
 - What are the algorithm steps?

Outline

- Clustering
- Distance function
- K-means algorithm
- Analysis of K-means

Properties of similarity function

- Desired properties of dissimilarity function
 - Symmetry: d(x, y) = d(y, x)
 - Otherwise you can claim "Alex looks like Bob, but Bob looks nothing like Alex.
 - Positive separability:
 - d(x, y) = 0, if and only if x = y
 - Otherwise there are objects that are different, but you cannot tell apart
 - Triangular inequality: $d(x, y) \le d(x, z) + d(z, y)$
 - Otherwise you can claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl.

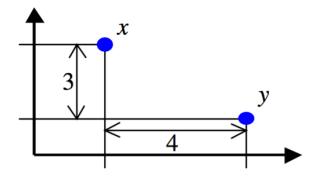
Distance functions for vectors

• Suppose two data points, both in R^d

$$-x = (x_1, x_2, ..., x_d)^T -y = (y_1, y_2, ..., y_d)^T$$

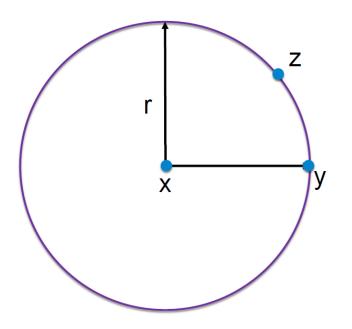
- Euclidian distance: $d(x, y) = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
- Minkowski distance: $d(x, y) = \sqrt[p]{\sum_{i=1}^{n} (x_i y_i)^p}$
 - Manhattan distance: $p = 1, d(x, y) = \sum_{i=1}^{d} |x_i y_i|$
 - "inf"-distance: $p = \infty$, $d(x, y) = \max(|x_i y_i|)$

Example



- Euclidian distance: $\sqrt{4^2 + 3^2} = 5$
- Manhattan distance: 4 + 3 = 7
- "inf"-distance: $max{4,3} = 4$

Some problems with Euclidean distance



Hamming Distance

- Manhattan distance is also called Hamming distance when all features are binary
 - Count the number of difference between two binary vectors
 - Example, $x, y \in \{0, 1\}^{17}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
\overline{x}	0	1	1	0	0	1	0	0	1	0	0	1	1	1	0	0	1
<u>y</u>	0	1	1	1	0	0	0	0	1	1	1	1	1	1	15 0 0	1	1

d(x,y)=5

Edit distance

 Transform one of the objects into the other, and measure how much effort it takes

x INTE * NTION | | | | | | | | | | y *EXECUTION dss is

d: deletion (cost 5) s: substitution (cost 1) i: insertion (cost 2) d(x, y) = 5 * 1 + 1 * 3 + 2 * 1 = 10

Outline

- Clustering
- Distance function
- K-means algorithm
- Analysis of K-means

Results of K-means clustering

Image

Clusters on intensity

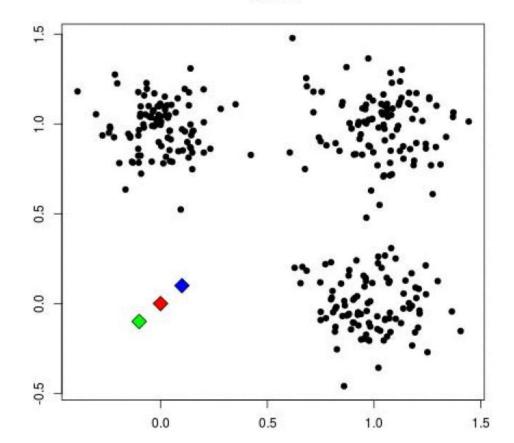
Clusters on color

Clustering using intensity only and color only

* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

K-Means algorithm

Start!



<u>Visualizing K-Means Clustering</u>

K-means algorithm

• Initialize k cluster centers, $\{c^1, c^2, ..., c^k\}$, randomly

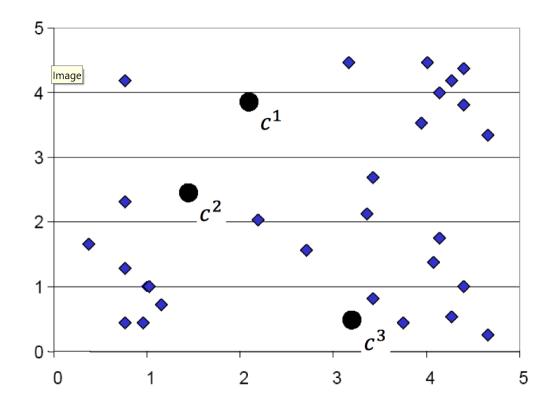
Do

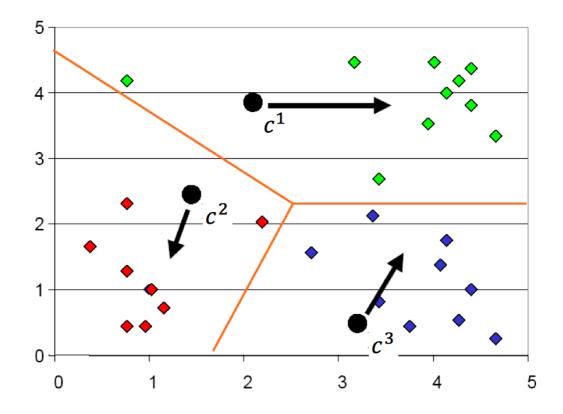
• Decide the cluster memberships of each data point, x^i , by assigning it to the nearest cluster center (cluster assignment) $\pi(i) = argmin_{j=1,\dots,k} \|x^i - c^j\|^2$

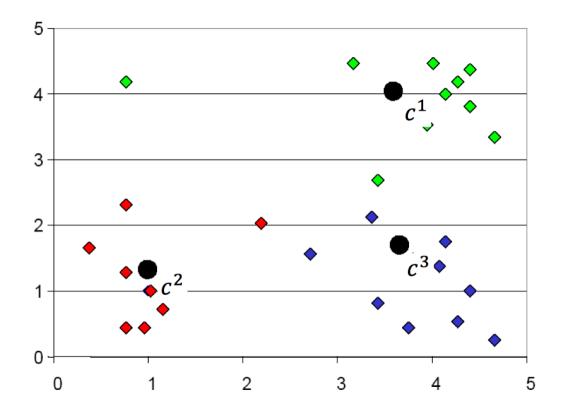
Adjust the cluster centers (center adjustment)

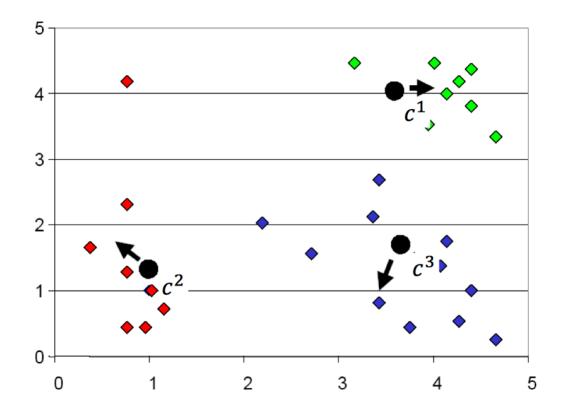
$$c^{j} = \frac{1}{|\{i:\pi(i)=j\}|} \sum_{i:\pi(i)=j} x^{i}$$

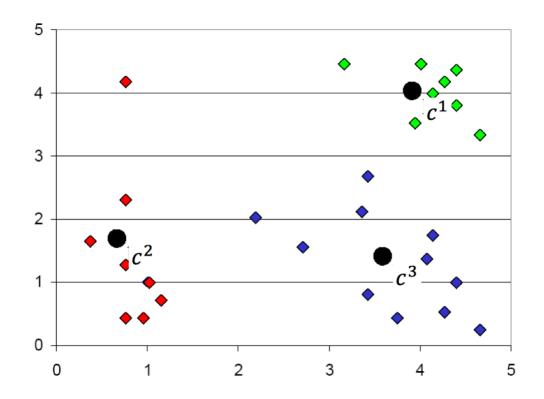
While any cluster center has been changed











Outline

- Clustering
- Distance function
- K-means algorithm
- Analysis of K-means

Questions

- Will different initialization lead to different results?
 - Yes
 - No
 - Sometimes
- Will the algorithm always stop after some iterations?
 - Yes
 - No (We have to set a maximum number of iterations)
 - Sometime

Yes. Does it always converge to a optimum?

=> No, it is likely to converge to a local optimum.

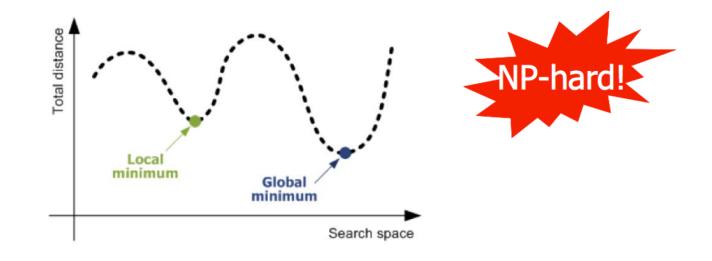
Formal statement of the clustering problem

- Given *n* data points, $\{x^1, x^2, \dots, x^n\} \in \mathbb{R}^d$
- Find k cluster centers, $\{c^1, c^2, ..., c^k\} \in \mathbb{R}^d$
- And assign each data point i to one cluster, $\pi(i) \in \{1, \dots, k\}$
- Such that the averaged square distances from each data point to its respective cluster center is small

$$\min \frac{1}{n} \sum_{i=1}^{n} ||x^{i} - c^{\pi(i)}||^{2}$$

Clustering is NP-Hard

- Find k cluster centers, $\{c^1, c^2, ..., c^k\} \in \mathbb{R}^d$ and assign each data point to one cluster, $\pi(i) \in \{1, ..., k\}$, minimize $\min \frac{1}{n} \sum_{i=1}^{n} ||x^i c^{\pi(i)}||^2$
- A search problem over the space of discrete assignments
 - For all n data points together, there are k^n possibility
 - The cluster assignment determines cluster centers.



An example

- For all n data points together, there are k^n possibilities, where k is the number of clusters.
- An example:

- X={A, B, C}, n=3 (data points) k = 2 clusters

Convergence of K-Means

• Will K-Means objective oscillate?

$$\min \frac{1}{n} \sum_{i=1}^{n} ||x^{i} - c^{\pi(i)}||^{2}$$

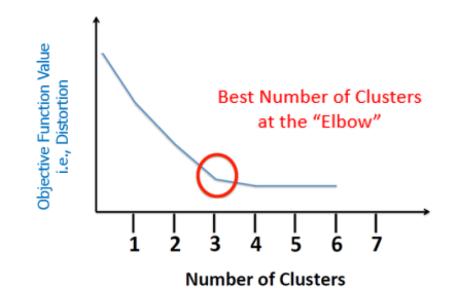
- The minimum value of the objective is finite.
- Each iteration of K-means algorithm decrease the objective.
 - Both cluster assignment step and center adjustment step decrease objective $argmin_{j=1,...,k}||x^i c^j||^2$ for each data point *i*

Time Complexity

- Assume computing distance between two instances is O(d) where d is the dimensionality of the vectors.
- Reassigning clusters for all datapoints:
 - O(kn) distance computations (when there is one feature)
 - O(knd) (when there is d features)
- Computing centroids: Each instance vector gets added once to some centroid (Finding centroid for each feature): O(nd).
- Assume these two steps are each done once for I iterations: O(Iknd).

Slide credit: Ray Mooney.

How to choose *K*?



Distortion score: computing the sum of squared distances from each point to its assigned center.