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Logistics 

• Form your project team 
• Schedule of assignments and project 

– Every two weeks, there will be a new homework. In total, 
we have 4. 

– Project schedule: 
• Next Wednesday (Jun 3rd) our lecture will be about the project 

requirement. 
• This weekend, I will share some dataset that you may use for your 

project. I will create a excel file that briefly introduces your project. 
• Form your team by the end of next week and I will assign you a 

team randomly on Friday Jun 5th. 
• Project proposal is due on Sun Jun 14th. 
• Project presentation is on Wed July 13th. 
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Outline 

• Overfitting and regularized learning 

• Ridge regression 

• Lasso regression 

• Determining regularization length 
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Regression 

• Suppose we are given a training set of N observations 
* 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 + 

• Regression problem is to estimate 𝑦(𝑥) from the dataset. 
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• Want to fit this data to a polynomial regression model: 
𝑦 =  𝜃0 + 𝜃1𝑥

1 + … + 𝜃𝑑𝑥
𝑑+ 𝜖 

• Let 𝑧 = *1, 𝑥1, 𝑥2,…𝑥𝑑+ ∈ 𝑅𝑑and 𝜃 = (𝜃0, 𝜃1 , … , 𝜃𝑑)
𝑇 

→ 𝑦 = 𝑧𝜃 
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Which one is better? 

Can we increase the maximal polynomial degree to a very large 
dimension, as a “safe” solution? 

– No, this can lead to overfitting !!! 
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The overfitting problem 

• The training error is very low, but the error on test set 
is large. 

• The model captures not only patterns but also noisy 
nuisances in the training data. 7 



The overfitting problem 

• In regression, overfitting is often associated with large 
weights (severe oscillation). 

• How can we address overfitting? 
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Regularization (smart way to cure 
overfitting disease) 

• Fit a linear line on sinusoidal with just two points. 

Put a break on fitting 
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Who is the winner? 

𝑔 (𝑥) is the average over all lines 

Bias=0.21; var=1.69 Bias=0.23; var=0.33 
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Regularized learning 

Minimize 𝐸 𝜃 +
𝜆

𝑁
𝜃𝑇𝜃 

𝐸 𝜃 =
1

𝑁
 *𝑓(𝑥𝑖 , 𝜃)+2
𝑁

𝑖=1

+
𝜆

𝑁
𝜃𝑇𝜃 

Cost function: squared loss 

Loss function Regularization 

Why this term leads 
to regularization of 
parameters? 
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Regularization is just constraining the 
weights(𝜃) 

• For simplicity: let’s call 𝜃𝑙𝑖𝑛 as weights’ solution for non-
constrained one and 𝜃 for the constraint model.  

• Want to fit this data to a polynomial regression model: 
𝑦 =  𝜃0 + 𝜃1𝑥

1 + … + 𝜃𝑑𝑥
𝑑+ 𝜖 

• Let 𝑧 = *1, 𝑥1, 𝑥2,…𝑥𝑑+ ∈ 𝑅𝑑and 𝜃 = (𝜃0, 𝜃1 , … , 𝜃𝑑)
𝑇  

Minimize E θ =  
1

𝑁
𝑍𝜃 − 𝑦 𝑇(𝑍𝜃 − 𝑦) 

Subject to 𝜃𝑡𝜃 ≤ 𝐶 
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Consider an example 

Let d=2:  𝑦 =  𝜃0 + 𝜃1𝑍1 + 𝜃2𝑍2 

An example:  E θ = ( 5 + 10𝑥 − 𝑦)2 
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Gradient 𝜃𝑇𝜃 

• Imagine you standing at a point 𝜃0, 𝜃1 ,𝛻(𝜃𝑇𝜃) tells you which 
direction you should go to increase the value of 𝜃𝑇𝜃 most rapidly. 

𝛻(𝜃𝑇𝜃) is a vector, any line passing 
through the center of the circle. 
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Graph of 𝜃𝑇𝜃  
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Minimize E θ =  
1

𝑁
𝑍𝜃 − 𝑦 𝑇(𝑍𝜃 − 𝑦) 

Subject to 𝜃𝑡𝜃 ≤ 𝐶 

𝛻𝐸: the gradient (rate) in 
objective function that 
minimizes the error 
(orthogonal to ellipse) 

𝐸(𝜃) 

𝜃𝑙𝑖𝑛 

𝛻(𝜃𝑡𝜃) 
𝛻𝐸(𝜃) 

Applying a constraint 𝜃𝑡𝜃, 
where the best solution 
happens? 

On the boundary of the circle, as it 
is the closest one to the minimum 
absolute 16 



Do the integration 

 

𝜃𝑙𝑖𝑛 

𝜃𝑡𝜃 ≤ 𝐶 

Minimize E θ +
𝜆

𝑁
𝜃𝑇𝜃 𝐸(𝜃) 

(𝜃𝑡𝜃) 

The final solution is 𝜽, after 
applying the regularization. 

𝜽 
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Outline 

• Overfitting and regularized learning 

• Ridge regression 

• Lasso regression 

• Determining regularization length 
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Ridge Regression 

• Cost function-square loss 

𝐸 𝜃 =
1

𝑁
 *𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖+

2

𝑁

𝑖=1

+
𝜆

𝑁
||𝜃||2 

Loss function Regularization 

• Regression function for x (1d) 

𝑦 =  𝜃0 + 𝜃1𝑍1 + … + 𝜃𝑑𝑍𝑑+ 𝜖 

19 



Solving for the weights 𝜃 

An example, with polynomial regression with basic functions up to 𝑥2 

Write the target and the regressed values as vectors 
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𝐸 𝜃 =
1

𝑁
 *𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖+

2

𝑁

𝑖=1

+
𝜆

𝑁
||𝜃||2 

𝐸 𝜃 =
1

𝑁
(𝑦 − 𝑍𝜃)2+

𝜆

𝑁
||𝜃||2 

Let’s compute derivative w.r.t. 𝜃 is zero for minimum.  

𝜃 = (𝑍𝑇𝑍 + 𝜆𝐼)−1𝑍𝑇𝑦 

(𝑍𝑇𝑍 + 𝜆𝐼)𝜃 = 𝑍𝑇𝑦 
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• If 𝜆 =0 (no regularization), then θ = (𝑍𝑇𝑍)−1𝑍𝑇y 

• If 𝜆 = ∞, θ =
1

𝜆
𝑍𝑇y → 0 

• Adding the term 𝜆𝐼 improves the conditioning of the 
inverse, since if 𝑍 is not full rank, then 𝑍𝑇𝑍 + 𝜆𝐼 will be (for 
sufficiently large 𝜆). 
 
 

𝜃 = (𝑍𝑇𝑍 + 𝜆𝐼)−1𝑍𝑇𝑦 

D×1 D×D D×N N × 1 
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Ridge Regression Example 

• The red curve is the true function 
(which is not polynomial). 

• The data points are samples from the 
curve with added noise in 𝑦. 

• There is a choice in both the degree (D) 
of the basis functions used and in the 
strength of the regularization. 

𝐸 𝜃 =
1

𝑁
 *𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖+

2

𝑁

𝑖=1

+
𝜆

𝑁
||𝜃||2 

𝜃 is a D+1 dimensional vector 
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N=9 samples, D=7 
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N=9 samples, D=3 N=9 samples, D=5 
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Outline 

• Overfitting and regularized learning 

• Ridge regression 

• Lasso regression 

• Determining regularization length 
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Regularized Regression 

• Minimize with respect to  

𝐸 𝜃 =
1

𝑁
 𝑙(𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖)

𝑁
𝑖=1 + 𝜆𝑅(𝜃) 

Loss function Regularization 

• There is a choice of both loss functions and regularization. 
• We have seen “ridge” regression: 

– Squared loss:  *𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖+
2𝑁

𝑖=1  
– Squared regularizer:𝜆||𝜃||2 
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The Lasso regularization (norm one) 

• LASSO = Least Absolute Shrinkage and Selection 

Minimize with respect to  

𝐸 𝜃 =
1

𝑁
 𝑙(𝑓 𝑥𝑖 , 𝜃 − 𝑦𝑖)

𝑁
𝑖=1 + 𝜆𝑅(𝜃) 

𝐸 𝜃 =
1

𝑁
(𝑦 − 𝑍𝜃)2+𝜆||𝜃||1 

P-Norm definition: ||𝜃||𝑝 = ( |𝜃|𝑝)𝑑
𝑗=1

1/𝑝
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Look at an example of two parameters 
with Lasso 

Minimize E θ =  
1

𝑁
𝑍𝜃 − 𝑦 𝑇(𝑍𝜃 − 𝑦) 

Subject to 𝜃 ≤ 𝐶 

𝜃 =
𝜃0

𝜃1
 

𝜃𝑙𝑖𝑛 

𝜃 ≤ 𝐶 

𝐸(𝜃) 

𝑐 

𝜽 𝑐 
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Outline 

• Overfitting and regularized learning 

• Ridge regression 

• Lasso regression 

• Determining regularization length 
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How to make use of data for learning?  

Train (75%) Test (25%) 

All data points 

Option 1: 

Train (100%) 

Option 2: 

How to do the “test”? 

Can we have a better way? 
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Leave-One-Out Cross Validation 
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K-Fold Cross Validation 
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Choosing λ Using Validation Dataset 

Pick up the lambda with the lowest mean value of 
RMSE calculated by Cross Validation approach 
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Take-Home Messages 

• What is overfitting 

• What is regularization 

• How does Ridge regression work 

• Sparsity properties of Lasso regression 

• How to choose the regularization coefficient λ 
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