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Recall one of our examples 

1 3 5 7 ? Problem 1: 

x 

Y 

Data 

𝑓(𝑥) 

Model 
𝑓(𝑥) 

Define your dataset: (X, Y) Learning (training the data) and predicting 



Supervised Learning: overview 

Functions 𝐹 
𝑓: 𝑥 → 𝑦 

Training data 
* (𝑥𝑖, 𝑦𝑖) ∈ 𝑥 × 𝑦 + 

Learning:  

Find 𝑓 ∈ 𝐹 

s.t. 𝑦𝑖  ≈  𝑓 (𝑥𝑖)  

Prediction: 

𝑦 = 𝑓 (𝑥𝑖)  Result New data: 𝑥 



Supervised Learning: two types of 
tasks 

Given: training data: * 𝑥1, 𝑦1 , 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 + 

Learn: a function 𝑓 𝑥 : 𝑦 = 𝑓(𝑥) 

When y is continuous When y is discrete 

1. Regression 2. Classification 



Example 1: Apartment Rent Prediction 

• Suppose you are to move to Altanta  

• You want to find the most reasonably priced 
apartment satisfying your needs: (square-ft, # of 
bedrooms, rent price) 

Living area(ft^2) #bedroom Rent($) 

230 1 600 

506 2 1000 

433 2 1100 

109 1 500 

… … … 

150 1 ? 

270 1.5 ? 

A regression 
problem 



Example 2: Stock Price Prediction 

• The task is to predict stock prices at a future date. 

A regression problem 



Example 3: Hand-written Digit 
Recognition 

• Represent input image as a vector 𝑥 ∈ ℝ784 
• Learn a classifier 𝑓 𝑥  such that, 

– 𝑓(𝑥) → *0, 1, 2, 3, 4, 5, 6, 7, 8, 9+ 



Example 4: Spam Detection 

• The task is to classify emails into spam/non-spam. 
– Data 𝑥𝑖  is word count 
– This requires a learning system as “enemy” keeps 

innovating. 

A regression problem 



• Features 
– Living area, distance to campus, 

# bedroom 
– Denote as 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑑) 

• Target: 
– Rent 
– Denoted as 𝑦 

• Training set: 
– 𝑥 = *𝑥1, 𝑥2, …, 𝑥𝑛+ ∈ 𝑅𝑑  
– 𝑦 = *𝑦1, 𝑦2, …, 𝑦𝑛+ 

 



Regression: Problem setup 

• Suppose we are given a training set of N observations 
(𝑥1, 𝑥2, …, 𝑥𝑑) and (𝑦1, 𝑦2, …, 𝑦𝑛), 𝑥𝑖 , 𝑦𝑖 ∈ ℝ 

• Regression problem is to estimate 𝑦(𝑥) from this data 
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Linear Regression 

• Assume y is a linear function of 𝑥 (features) plus noise 𝜖 
 

𝑦 =  𝜃0 + 𝜃1𝑥1 + … + 𝜃𝑑𝑥𝑑  + 𝜖 

Where 𝜖 is an error term of unmodeled effects of random noise. 

• Let 𝜃 = (𝜃0 + 𝜃1 + … + 𝜃𝑑)𝑇, and augment data by one dimension 

– Then 𝑦 = 𝑥𝜃 + 𝜖 

 

 



Least Mean Square Method 

• Given n data points, find 𝜃 that minimizes the 
mean square error. 

Definition of Mean Square Error: 𝐿 𝜃 =  
1

𝑛
 (𝑦𝑖 − 𝑥𝑖𝜃)2𝑛

𝑖=1  

• Training: 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝐿 𝜃  

 
The trick is to set the gradient to 0 and find the parameter 𝜃 that 

𝜕𝐿(𝜃)

𝜕𝜃
= 0 

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇(𝑦𝑖 − 𝑥𝑖𝜃) = 0𝑛
𝑖=1  

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇𝑦𝑖
𝑛
𝑖=1 +

2

𝑛
 𝑥𝑖

𝑇𝑥𝑖𝜃
𝑛
𝑖=1  = 0 



• Let’s rewrite it as 

•
𝜕𝐿(𝜃)

𝜕𝜃
=-

2

𝑛
(𝑥1,  𝑥2,…, 𝑥𝑛)𝑇(𝑦1, 𝑦2,…, 𝑦𝑛)+

2

𝑛
(𝑥1,  𝑥2,…, 𝑥𝑛)𝑇(𝑥1, 

𝑥2,…, 𝑥𝑛)𝜃=0 

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇𝑦𝑖
𝑛
𝑖=1 +

2

𝑛
 𝑥𝑖

𝑇𝑥𝑖𝜃
𝑛
𝑖=1  = 0 

Define 𝑋 = (𝑥1,  𝑥2,…, 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2,…, 𝑦𝑛)  

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
𝑋𝑇𝑌+

2

𝑛
𝑋𝑇𝑋𝜃 = 0 

θ = (𝑋𝑇𝑋)−1𝑋𝑇Y 



𝑀𝑆𝐸 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝐿 𝜃 =
1

𝑛
𝑦 − 𝑥𝜃 𝑇(𝑦 − 𝑥𝜃) 

𝑦 =

𝑦1

𝑦2

…
𝑦𝑛

 , 𝑥 =

1 𝑥1
1 … 𝑥1

𝑑

1 𝑥2
1 … 𝑥2

𝑑

… … … …
1 𝑥𝑛

1 … 𝑥𝑛
𝑑

, θ =

𝜃1

𝜃2

…
𝜃𝑛

  



• This is not a big matrix because of 𝑛 ≫ 𝑑 
– Most times this matrix is invertible. 
– If 𝑋𝑇𝑋 are not linearly independent (it’s not a full rank matrix), 

then it is not invertible. 
 

𝑋𝑛×𝑑   n =#instances , d = dimension 

𝑋𝑇𝑋 = 



Alternative ways to optimize 

• Gradient descent:  

– 𝜃 𝑡+1 ← 𝜃 𝑡 +
𝑎

𝑛
 𝑥𝑖

𝑇(𝑦𝑖 − 𝑥𝑖𝜃)𝑛
𝑖=1  

• Stochastic gradient descent (use one data point at a time):  

– 𝜃 𝑡+1 ← 𝜃 𝑡 + 𝛽𝑡 ∗ 𝑥𝑖
𝑇(𝑦𝑖 − 𝑥𝑖𝜃) 

 

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇(𝑦𝑖 − 𝑥𝑖𝜃) = 0𝑛
𝑖=1  

The matrix operation is still can be very expensive 
to compute 



Linear regression for classification 

• Raw input 𝑥 = (𝑥1, 𝑥2, …, 𝑥256)  
• Linear model 𝜃 = (𝜃0 + 𝜃1 + … 

+ 𝜃256) 
• Extract useful information 

– Include intensity and symmetry 
𝑥 = (𝑥0, 𝑥1, 𝑥2) 

– Intensity = sum up all the pixels 
– Symmetry = -(difference between 

flip versions) 



𝑥 = (𝑥0, 𝑥1, 𝑥2), 𝑥1= intensity, 𝑥2=symmetry 



Linear regression for classification 

• Binary-value functions are also real-valued ±∈ 𝑅 
• Use linear regression 𝑥𝑖𝜃 ≈ 𝑦𝑛 = ±1, 𝑖 =index of a data 

point. 

• Let’s calculate, 𝑠𝑖𝑔𝑛 𝑥𝑖𝜃 =  
−1
0
1

    

𝑥𝑖𝜃 < 0
𝑥𝑖𝜃 = 0
𝑥𝑖𝜃 > 0

 



Not really the best for classification, but it’s a good start 
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Extension to higher-order regression 

• Want to fit it into a polynomial regression model: 
𝑦 =  𝜃0 + 𝜃1𝑥1 + … + 𝜃𝑑𝑥𝑑+ 𝜖 

• Let 𝑧 = *1, 𝑥1, 𝑥2,…𝑥𝑑+ ∈ 𝑅𝑑and 𝜃 = (𝜃0 + 𝜃1 + … + 𝜃𝑑)𝑇 
 

→ 𝑦 = 𝑧𝜃 



Least mean square still works here 

If we choose a different maximal degree 𝑑 for the polynomial, the 
solution will be different. 

MSE: 𝐿 𝜃 =  
1

𝑛
 (𝑦𝑖 − 𝑧𝑖𝜃)2𝑛

𝑖=1  

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑧𝑖

𝑇(𝑦𝑖 − 𝑧𝑖𝜃) = 0𝑛
𝑖=1  

θ = (𝑍𝑇𝑍)−1𝑍𝑇𝑌 = 𝑍+𝑌 

where 𝑍 = (1, 𝑥1, 𝑥2,…𝑥𝑑) and 𝑌 = (𝑦1, 𝑦2,…, 𝑦𝑛)  



What is happening in polynomial 
regression 

MSE=0 

𝑑=2 



Let’s add one more for the feature 
space 

𝑑=3 



• We are fitting a 𝑑 -dimensional hyperplane in a 𝑑 + 1 
dimensional hyperspace. 

• The hyperplane is still ‘flat’/’linear’ in 3D, with a non-linear 
regression (a curvy line). 



Increasing the maximal degree 

 



Which one is better? 

Can we increase the maximal polynomial degree to a very large 
dimension, as a “safe” solution? 

– See it in our next lecture 


