Lecture 04. Linear Regression

Xin Chen

Outline

- Supervised Learning
- Linear regression
- Extension

Recall one of our examples

Problem 1:

Define your dataset: (X, Y) Learning (training the data) and predicting

Supervised Learning: overview

Learning:

Prediction:

$$
1
$$

$$
y=\hat{f}\left(x_{i}\right) \Longrightarrow \text { Result }
$$

Supervised Learning: two types of tasks

Given: training data: $\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
Learn: a function $f(x): y=f(x)$

When y is continuous

1. Regression

When y is discrete
2. Classification

Example 1: Apartment Rent Prediction

- Suppose you are to move to Altanta
- You want to find the most reasonably priced apartment satisfying your needs: (square-ft, \# of bedrooms, rent price)

Living area(ft^2)	\#bedroom	Rent(\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
\ldots
150	1	$?$
270	1.5	$?$

A regression problem

Example 2: Stock Price Prediction

- The task is to predict stock prices at a future date.

A regression problem

Example 3: Hand-written Digit Recognition

- Represent input image as a vector $x \in \mathbb{R}^{784}$
- Learn a classifier $f(x)$ such that,

$$
-f(x) \rightarrow\{0,1,2,3,4,5,6,7,8,9\}
$$

Example 4: Spam Detection

- The task is to classify emails into spam/non-spam.
- Data x_{i} is word count
- This requires a learning system as "enemy" keeps innovating.

Google	in:spam	- Q
Gmail *	\square - $\square^{\text {- }}$ More	
compose		Delete all spam messages now (f) essages that have been in Spam more than
	\square Customer Service	You still have product(s) in your basket - Healthy Living Lifestyle Pre
Inbox (994)	\square) Sherley Rhoda	
Starred		From Sherley Rhoda
Sent Mail	\square) Customer Service	Activate your favorite videostreaming service - Your activation code is re
Drafts	\square Healthy Living	We have added your shopping credits today - Healthy Living \& Co. I
Less *		
Important	\square Shiningltd Team	15 inch wifi Android OS tablet pc - SHININGLTD Our Alibaba Shop C
$+$	\square) wikiHow Community Team (2)	Congratulations on your article's first Helpful Votel - Congratulationsl AI
	\square - FreeLotto	Jesse, NOTICE of FORFEITURE - Do not ignore! - NEVER miss an i
	\square Good Fella's	Our team assigned you to receive our new phone - Good Fella's Au:
	\square It Jason Squires	Make 2018 your best year yet - Hi there, Hope yoưre well, and have hi
	\square 隹 Bunnings	January arrivals - Image Congratulations Jesse Eaton! We have a very

A regression problem

Living area

- Features
- Living area, distance to campus, \# bedroom
- Denote as $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$
- Target:
- Rent
- Denoted as y
- Training set:
$-x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in R^{d}$
$-y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$

Regression: Problem setup

- Suppose we are given a training set of N observations $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right), x_{i}, y_{i} \in \mathbb{R}$
- Regression problem is to estimate $y(x)$ from this data

Outline

- Supervised Learning
- Linear regression
- Extension

Linear Regression

- Assume y is a linear function of x (features) plus noise ϵ

$$
y=\theta_{0}+\theta_{1} x_{1}+\ldots+\theta_{d} x_{d}+\epsilon
$$

Where ϵ is an error term of unmodeled effects of random noise.

- Let $\theta=\left(\theta_{0}+\theta_{1}+\ldots+\theta_{d}\right)^{T}$, and augment data by one dimension
- Then $y=x \theta+\epsilon$

x

Least Mean Square Method

- Given n data points, find θ that minimizes the mean square error.

Definition of Mean Square Error: $L(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-x_{i} \theta\right)^{2}$

- Training: $\hat{\theta}=\operatorname{argmin}_{\theta} L(\theta)$

The trick is to set the gradient to 0 and find the parameter θ that $\frac{\partial L(\theta)}{\partial \theta}=0$

$$
\begin{aligned}
& \frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n} \sum_{i=1}^{n} x_{i}^{T}\left(y_{i}-x_{i} \theta\right)=0 \\
& \frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n} \sum_{i=1}^{n} x_{i}^{T} y_{i}+\frac{2}{n} \sum_{i=1}^{n} x_{i}^{T} x_{i} \theta=0
\end{aligned}
$$

$$
\frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n} \sum_{i=1}^{n} x_{i}^{T} y_{i}+\frac{2}{n} \sum_{i=1}^{n} x_{i}^{T} x_{i} \theta=0
$$

- Let's rewrite it as
- $\frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}\left(y_{1}, y_{2}, \ldots, y_{n}\right)+\frac{2}{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}\left(x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right) \theta=0$

$$
\text { Define } X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and } Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

$$
\begin{aligned}
& \frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n} X^{T} Y+\frac{2}{n} X^{T} X \theta=0 \\
& \theta=\left(X^{T} X\right)^{-1} X^{T} Y
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{MSE}(\theta)=\operatorname{argmin}_{\theta} L(\theta)=\frac{1}{n}(y-x \theta)^{T}(y-x \theta) \\
y=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right], x=\left[\begin{array}{cccc}
1 & x_{1}\{1\} & \ldots & x_{1}\{d\} \\
1 & x_{2}\{1\} & \ldots & x_{2}\{d\} \\
\ldots & \ldots & \ldots & \ldots \\
1 & x_{n}\{1\} & \ldots & x_{n}\{d\}
\end{array}\right], \theta=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\ldots \\
\theta_{n}
\end{array}\right]
\end{gathered}
$$

- This is not a big matrix because of $n \gg d$
- Most times this matrix is invertible.
- If $X^{T} X$ are not linearly independent (it's not a full rank matrix), then it is not invertible.

Alternative ways to optimize

The matrix operation is still can be very expensive to compute

$$
\frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n} \sum_{i=1}^{n} x_{i}^{T}\left(y_{i}-x_{i} \theta\right)=0
$$

- Gradient descent:
$-\hat{\theta}^{t+1} \leftarrow \hat{\theta}^{t}+\frac{a}{n} \sum_{i=1}^{n} x_{i}^{T}\left(y_{i}-x_{i} \theta\right)$
- Stochastic gradient descent (use one data point at a time):
$-\hat{\theta}^{t+1} \leftarrow \hat{\theta}^{t}+\beta_{t} * x_{i}^{T}\left(y_{i}-x_{i} \theta\right)$

Linear regression for classification

- Raw input $x=\left(x_{1}, x_{2}, \ldots, x_{256}\right)$
- Linear model $\theta=\left(\theta_{0}+\theta_{1}+\ldots\right.$ $+\theta_{256}$)
- Extract useful information
- Include intensity and symmetry

$$
x=\left(x_{0}, x_{1}, x_{2}\right)
$$

- Intensity = sum up all the pixels
- Symmetry = -(difference between flip versions)

$$
x=\left(x_{0}, x_{1}, x_{2}\right), x_{1}=\text { intensity }, x_{2}=\text { symmetry }
$$

It is almost linearly separable

Linear regression for classification

- Binary-value functions are also real-valued $\pm \in R$
- Use linear regression $x_{i} \theta \approx y_{n}= \pm 1, i=$ index of a data point.
- Let's calculate, $\operatorname{sign}\left(x_{i} \theta\right)=\left\{\begin{array}{cc}-1 & x_{i} \theta<0 \\ 0 & x_{i} \theta=0 \\ 1 & x_{i} \theta>0\end{array}\right.$

Not really the best for classification, but it's a good start

Outline

- Supervised Learning
- Linear regression
- Extension

Extension to higher-order regression

- Want to fit it into a polynomial regression model:
$y=\theta_{0}+\theta_{1} x^{1}+\ldots+\theta_{d} x^{d}+\epsilon$
- Let $z=\left\{1, x^{1}, x^{2}, \ldots x^{d}\right\} \in R^{d}$ and $\theta=\left(\theta_{0}+\theta_{1}+\ldots+\theta_{d}\right)^{T}$

$$
\rightarrow y=z \theta
$$

Least mean square still works here

$$
\begin{gathered}
\text { MSE: } L(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-z_{i} \theta\right)^{2} \\
\frac{\partial L(\theta)}{\partial \theta}=-\frac{2}{n} \sum_{i=1}^{n} Z_{i}^{T}\left(y_{i}-z_{i} \theta\right)=0 \\
\theta=\left(Z^{T} Z\right)^{-1} Z^{T} Y=Z^{+} Y
\end{gathered}
$$

$$
\text { where } Z=\left(1, x^{1}, x^{2}, \ldots x^{d}\right) \text { and } Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

If we choose a different maximal degree d for the polynomial, the solution will be different.

What is happening in polynomial regression

$$
\left.\begin{array}{l}
x=[0,0.5,1, \ldots, 9.5,10] \\
y=[3,3.4875,3.95, \ldots, 7.98,8]
\end{array}\right] \quad \begin{array}{ll}
f=\theta_{0}+\theta_{1} x+\theta_{2} x^{2} & d=2 \\
\theta_{0}=3 ; \theta_{1}=1 ; \theta_{2}=-0.5
\end{array}
$$

Let's add one more for the feature

space

$$
\left.\begin{array}{l}
x=[0,0.5,1, \ldots, 9.5,10] \\
y=[3,3.4875,3.95, \ldots, 7.98,8]
\end{array}\right\} d=3
$$

- We are fitting a d-dimensional hyperplane in a $d+1$ dimensional hyperspace.
- The hyperplane is still 'flat'/'linear' in 3D, with a non-linear regression (a curvy line).

Increasing the maximal degree

Which one is better?

Can we increase the maximal polynomial degree to a very large dimension, as a "safe" solution?

- See it in our next lecture

