Machine Learning CS 4641-B Summer 2020

Lecture 04. Linear Regression

Xin Chen

These slides are based on slides from Mahdi Roozbahani

Outline

- Supervised Learning
- Linear regression
- Extension

Recall one of our examples

Supervised Learning: overview

Supervised Learning: two types of tasks

Given: training data: $\{(x_1, y_1), (x_1, y_1), \dots, (x_n, y_n)\}$ Learn: a function f(x): y = f(x)

When y is continuous

1. Regression

When y is discrete

2. Classification

Example 1: Apartment Rent Prediction

- Suppose you are to move to Altanta
- You want to find the most reasonably priced apartment satisfying your needs: (square-ft, # of bedrooms, rent price)

Living area(ft^2)	#bedroom	Rent(\$)
230	1	600
506	2	1000
433	2	1100
109	1	500
150	1	?
270	1.5	?

A regression problem

Example 2: Stock Price Prediction

• The task is to predict stock prices at a future date.

A regression problem

Example 3: Hand-written Digit Recognition

- Represent input image as a vector $x \in \mathbb{R}^{784}$
- Learn a classifier f(x) such that,

 $-f(x) \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Example 4: Spam Detection

- The task is to classify emails into spam/non-spam.
 - Data x_i is word count
 - This requires a learning system as "enemy" keeps innovating.

Google	in:spam 👻 Q		
Gmail -	C More -		
COMPOSE	Delete all spam messages now (r essages that have been in Spam more than		
Inbox (994)	Customer Service	You still have product(s) in your basket - Healthy Living Lifestyle Pre	
Starred	🗋 📩 Sherley Rhoda	From Sherley Rhoda	
Sent Mail	Customer Service	Activate your favorite videostreaming service - Your activation code is re-	
Drafts Less • Important	□ 📩 Healthy Living	We have added your shopping credits today - Healthy Living & Co. f	
	🗌 🚖 ShiningItd Team	15 inch wifi Android OS tablet pc - SHININGLTD Our Alibaba Shop O	
+	implication wikiHow Community Team (2)	Congratulations on your article's first Helpful Votel - Congratulations! A l	
	C 📩 FreeLotto	Jesse, NOTICE of FORFEITURE - Do not ignore! - NEVER miss an i	
	□ 📩 Good Fella's	Our team assigned you to receive our new phone - Good Fella's Au	
	🗌 📩 Jason Squires	Make 2018 your best year yet - Hi there, Hope you're well, and have have	
	🗌 📩 Bunnings	January arrivals - Image Congratulations Jesse Eaton! We have a very	

A regression problem

- Features
 - Living area, distance to campus, # bedroom

- Denote as
$$x = (x_1, x_2, ..., x_d)$$

- Target:
 - Rent
 - Denoted as y
- Training set:

$$-x = \{x_1, x_2, ..., x_n\} \in \mathbb{R}^d$$
$$-y = \{y_1, y_2, ..., y_n\}$$

Regression: Problem setup

- Suppose we are given a training set of N observations $(x_1, x_2, ..., x_d)$ and $(y_1, y_2, ..., y_n), x_i, y_i \in \mathbb{R}$
- Regression problem is to estimate y(x) from this data

Outline

- Supervised Learning
- Linear regression
- Extension

Linear Regression

• Assume y is a linear function of x (features) plus noise ϵ

$$y = \theta_0 + \theta_1 x_1 + \dots + \theta_d x_d + \epsilon$$

Where ϵ is an error term of unmodeled effects of random noise.

• Let $\theta = (\theta_0 + \theta_1 + ... + \theta_d)^T$, and augment data by one dimension - Then $y = x\theta + \epsilon$

Least Mean Square Method

• Given n data points, find θ that minimizes the mean square error.

Definition of Mean Square Error: $L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i \theta)^2$

• Training: $\hat{\theta} = argmin_{\theta} L(\theta)$

The trick is to set the gradient to 0 and find the parameter θ that $\frac{\partial L(\theta)}{\partial \theta} = 0$ $\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T (y_i - x_i \theta) = 0$ $\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T y_i + \frac{2}{n} \sum_{i=1}^{n} x_i^T x_i \theta = 0$

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T y_i + \frac{2}{n} \sum_{i=1}^{n} x_i^T x_i \theta = 0$$

- Let's rewrite it as
- $\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} (x_1, x_2, ..., x_n)^T (y_1, y_2, ..., y_n) + \frac{2}{n} (x_1, x_2, ..., x_n)^T (x_1, x_n)^T (x_1, x_n)^T (x_n$

Define $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} X^T Y + \frac{2}{n} X^T X \theta = 0$$
$$\theta = (X^T X)^{-1} X^T Y$$

$$MSE(\theta) = argmin_{\theta} L(\theta) = \frac{1}{n} (y - x\theta)^{T} (y - x\theta)$$
$$y = \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{n} \end{bmatrix}, x = \begin{bmatrix} 1 & x_{1}^{\{1\}} & \dots & x_{1}^{\{d\}} \\ 1 & x_{2}^{\{1\}} & \dots & x_{2}^{\{d\}} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n}^{\{1\}} & \dots & x_{n}^{\{d\}} \end{bmatrix}, \theta = \begin{bmatrix} \theta_{1} \\ \theta_{2} \\ \dots \\ \theta_{n} \end{bmatrix}$$

- This is not a big matrix because of $n \gg d$
 - Most times this matrix is invertible.
 - If $X^T X$ are not linearly independent (it's not a full rank matrix), then it is not invertible.

Alternative ways to optimize

The matrix operation is still can be very expensive to compute

$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} x_i^T (y_i - x_i \theta) = 0$$

• Gradient descent:

$$- \hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \frac{a}{n} \sum_{i=1}^n x_i^T (y_i - x_i \theta)$$

• Stochastic gradient descent (use one data point at a time): $-\hat{\theta}^{t+1} \leftarrow \hat{\theta}^t + \beta_t * x_i^T (y_i - x_i \theta)$

Linear regression for classification

- Raw input $x = (x_1, x_2, ..., x_{256})$
- Linear model $\theta = (\theta_0 + \theta_1 + ... + \theta_{256})$
- Extract useful information
 - Include intensity and symmetry $x = (x_0, x_1, x_2)$
 - Intensity = sum up all the pixels
 - Symmetry = -(difference between flip versions)

16

16

$$x = (x_0, x_1, x_2), x_1$$
 = intensity, x_2 = symmetry

It is almost linearly separable

intensity

Linear regression for classification

- Binary-value functions are also real-valued $\pm \in R$
- Use linear regression $x_i \theta \approx y_n = \pm 1$, i = index of a data point.

• Let's calculate,
$$sign(x_i\theta) = \begin{cases} -1 & x_i\theta < 0\\ 0 & x_i\theta = 0\\ 1 & x_i\theta > 0 \end{cases}$$

Not really the best for classification, but it's a good start

Outline

- Supervised Learning
- Linear regression
- Extension

Extension to higher-order regression

- Want to fit it into a polynomial regression model: $y = \theta_0 + \theta_1 x^1 + ... + \theta_d x^d + \epsilon$
- Let $z = \{1, x^1, x^2, ..., x^d\} \in R^d$ and $\theta = (\theta_0 + \theta_1 + ... + \theta_d)^T$

$$\rightarrow y = z\theta$$

Least mean square still works here

$$MSE: L(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - z_i \theta)^2$$
$$\frac{\partial L(\theta)}{\partial \theta} = -\frac{2}{n} \sum_{i=1}^{n} z_i^T (y_i - z_i \theta) = 0$$
$$\theta = (Z^T Z)^{-1} Z^T Y = Z^+ Y$$

where $Z = (1, x^1, x^2, ..., x^d)$ and $Y = (y_1, y_2, ..., y_n)$

If we choose a different maximal degree d for the polynomial, the solution will be different.

What is happening in polynomial regression

- We are fitting a d -dimensional hyperplane in a d + 1 dimensional hyperspace.
- The hyperplane is still 'flat'/'linear' in 3D, with a non-linear regression (a curvy line).

Increasing the maximal degree

Which one is better?

Can we increase the maximal polynomial degree to a very large dimension, as a "safe" solution?

See it in our next lecture