
Lecture 04. Linear Regression

Xin Chen

Machine Learning CS 4641-B Summer 2020

These slides are based on slides from Mahdi Roozbahani
1

Outline

• Supervised Learning

• Linear regression

• Extension

Recall one of our examples

1 3 5 7 ? Problem 1:

x

Y

Data

𝑓(𝑥)

Model
𝑓(𝑥)

Define your dataset: (X, Y) Learning (training the data) and predicting

Supervised Learning: overview

Functions 𝐹
𝑓: 𝑥 → 𝑦

Training data
* (𝑥𝑖, 𝑦𝑖) ∈ 𝑥 × 𝑦 +

Learning:

Find 𝑓 ∈ 𝐹

s.t. 𝑦𝑖 ≈ 𝑓 (𝑥𝑖)

Prediction:

𝑦 = 𝑓 (𝑥𝑖) Result New data: 𝑥

Supervised Learning: two types of
tasks

Given: training data: * 𝑥1, 𝑦1 , 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 +

Learn: a function 𝑓 𝑥 : 𝑦 = 𝑓(𝑥)

When y is continuous When y is discrete

1. Regression 2. Classification

Example 1: Apartment Rent Prediction

• Suppose you are to move to Altanta

• You want to find the most reasonably priced
apartment satisfying your needs: (square-ft, # of
bedrooms, rent price)

Living area(ft^2) #bedroom Rent($)

230 1 600

506 2 1000

433 2 1100

109 1 500

… … …

150 1 ?

270 1.5 ?

A regression
problem

Example 2: Stock Price Prediction

• The task is to predict stock prices at a future date.

A regression problem

Example 3: Hand-written Digit
Recognition

• Represent input image as a vector 𝑥 ∈ ℝ784
• Learn a classifier 𝑓 𝑥 such that,

– 𝑓(𝑥) → *0, 1, 2, 3, 4, 5, 6, 7, 8, 9+

Example 4: Spam Detection

• The task is to classify emails into spam/non-spam.
– Data 𝑥𝑖 is word count
– This requires a learning system as “enemy” keeps

innovating.

A regression problem

• Features
– Living area, distance to campus,

bedroom
– Denote as 𝑥 = (𝑥1, 𝑥2, …, 𝑥𝑑)

• Target:
– Rent
– Denoted as 𝑦

• Training set:
– 𝑥 = *𝑥1, 𝑥2, …, 𝑥𝑛+ ∈ 𝑅𝑑
– 𝑦 = *𝑦1, 𝑦2, …, 𝑦𝑛+

Regression: Problem setup

• Suppose we are given a training set of N observations
(𝑥1, 𝑥2, …, 𝑥𝑑) and (𝑦1, 𝑦2, …, 𝑦𝑛), 𝑥𝑖 , 𝑦𝑖 ∈ ℝ

• Regression problem is to estimate 𝑦(𝑥) from this data

Outline

• Supervised Learning

• Linear regression

• Extension

Linear Regression

• Assume y is a linear function of 𝑥 (features) plus noise 𝜖

𝑦 = 𝜃0 + 𝜃1𝑥1 + … + 𝜃𝑑𝑥𝑑 + 𝜖

Where 𝜖 is an error term of unmodeled effects of random noise.

• Let 𝜃 = (𝜃0 + 𝜃1 + … + 𝜃𝑑)𝑇, and augment data by one dimension

– Then 𝑦 = 𝑥𝜃 + 𝜖

Least Mean Square Method

• Given n data points, find 𝜃 that minimizes the
mean square error.

Definition of Mean Square Error: 𝐿 𝜃 =
1

𝑛
 (𝑦𝑖 − 𝑥𝑖𝜃)2𝑛

𝑖=1

• Training: 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝐿 𝜃

The trick is to set the gradient to 0 and find the parameter 𝜃 that

𝜕𝐿(𝜃)

𝜕𝜃
= 0

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇(𝑦𝑖 − 𝑥𝑖𝜃) = 0𝑛
𝑖=1

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇𝑦𝑖
𝑛
𝑖=1 +

2

𝑛
 𝑥𝑖

𝑇𝑥𝑖𝜃
𝑛
𝑖=1 = 0

• Let’s rewrite it as

•
𝜕𝐿(𝜃)

𝜕𝜃
=-

2

𝑛
(𝑥1, 𝑥2,…, 𝑥𝑛)𝑇(𝑦1, 𝑦2,…, 𝑦𝑛)+

2

𝑛
(𝑥1, 𝑥2,…, 𝑥𝑛)𝑇(𝑥1,

𝑥2,…, 𝑥𝑛)𝜃=0

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇𝑦𝑖
𝑛
𝑖=1 +

2

𝑛
 𝑥𝑖

𝑇𝑥𝑖𝜃
𝑛
𝑖=1 = 0

Define 𝑋 = (𝑥1, 𝑥2,…, 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2,…, 𝑦𝑛)

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
𝑋𝑇𝑌+

2

𝑛
𝑋𝑇𝑋𝜃 = 0

θ = (𝑋𝑇𝑋)−1𝑋𝑇Y

𝑀𝑆𝐸 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 𝐿 𝜃 =
1

𝑛
𝑦 − 𝑥𝜃 𝑇(𝑦 − 𝑥𝜃)

𝑦 =

𝑦1

𝑦2

…
𝑦𝑛

 , 𝑥 =

1 𝑥1
1 … 𝑥1

𝑑

1 𝑥2
1 … 𝑥2

𝑑

… … … …
1 𝑥𝑛

1 … 𝑥𝑛
𝑑

, θ =

𝜃1

𝜃2

…
𝜃𝑛

• This is not a big matrix because of 𝑛 ≫ 𝑑
– Most times this matrix is invertible.
– If 𝑋𝑇𝑋 are not linearly independent (it’s not a full rank matrix),

then it is not invertible.

𝑋𝑛×𝑑 n =#instances , d = dimension

𝑋𝑇𝑋 =

Alternative ways to optimize

• Gradient descent:

– 𝜃 𝑡+1 ← 𝜃 𝑡 +
𝑎

𝑛
 𝑥𝑖

𝑇(𝑦𝑖 − 𝑥𝑖𝜃)𝑛
𝑖=1

• Stochastic gradient descent (use one data point at a time):

– 𝜃 𝑡+1 ← 𝜃 𝑡 + 𝛽𝑡 ∗ 𝑥𝑖
𝑇(𝑦𝑖 − 𝑥𝑖𝜃)

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑥𝑖

𝑇(𝑦𝑖 − 𝑥𝑖𝜃) = 0𝑛
𝑖=1

The matrix operation is still can be very expensive
to compute

Linear regression for classification

• Raw input 𝑥 = (𝑥1, 𝑥2, …, 𝑥256)
• Linear model 𝜃 = (𝜃0 + 𝜃1 + …

+ 𝜃256)
• Extract useful information

– Include intensity and symmetry
𝑥 = (𝑥0, 𝑥1, 𝑥2)

– Intensity = sum up all the pixels
– Symmetry = -(difference between

flip versions)

𝑥 = (𝑥0, 𝑥1, 𝑥2), 𝑥1= intensity, 𝑥2=symmetry

Linear regression for classification

• Binary-value functions are also real-valued ±∈ 𝑅
• Use linear regression 𝑥𝑖𝜃 ≈ 𝑦𝑛 = ±1, 𝑖 =index of a data

point.

• Let’s calculate, 𝑠𝑖𝑔𝑛 𝑥𝑖𝜃 =
−1
0
1

𝑥𝑖𝜃 < 0
𝑥𝑖𝜃 = 0
𝑥𝑖𝜃 > 0

Not really the best for classification, but it’s a good start

Outline

• Supervised Learning

• Linear regression

• Extension

Extension to higher-order regression

• Want to fit it into a polynomial regression model:
𝑦 = 𝜃0 + 𝜃1𝑥1 + … + 𝜃𝑑𝑥𝑑+ 𝜖

• Let 𝑧 = *1, 𝑥1, 𝑥2,…𝑥𝑑+ ∈ 𝑅𝑑and 𝜃 = (𝜃0 + 𝜃1 + … + 𝜃𝑑)𝑇

→ 𝑦 = 𝑧𝜃

Least mean square still works here

If we choose a different maximal degree 𝑑 for the polynomial, the
solution will be different.

MSE: 𝐿 𝜃 =
1

𝑛
 (𝑦𝑖 − 𝑧𝑖𝜃)2𝑛

𝑖=1

𝜕𝐿(𝜃)

𝜕𝜃
 = -

2

𝑛
 𝑧𝑖

𝑇(𝑦𝑖 − 𝑧𝑖𝜃) = 0𝑛
𝑖=1

θ = (𝑍𝑇𝑍)−1𝑍𝑇𝑌 = 𝑍+𝑌

where 𝑍 = (1, 𝑥1, 𝑥2,…𝑥𝑑) and 𝑌 = (𝑦1, 𝑦2,…, 𝑦𝑛)

What is happening in polynomial
regression

MSE=0

𝑑=2

Let’s add one more for the feature
space

𝑑=3

• We are fitting a 𝑑 -dimensional hyperplane in a 𝑑 + 1
dimensional hyperspace.

• The hyperplane is still ‘flat’/’linear’ in 3D, with a non-linear
regression (a curvy line).

Increasing the maximal degree

Which one is better?

Can we increase the maximal polynomial degree to a very large
dimension, as a “safe” solution?

– See it in our next lecture

