Lecture 13. Support Vector Machine

Xin Chen

Outline

- Precursor: Linear Classifier and Perceptron \sim
- Support Vector Machine
- Parameter Learning

Binary Classification

Given training data $\left(\mathbf{x}_{i}, y_{i}\right)$ for $i=1 \ldots N$, with $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{-1,1\}$, learn a classifier $f(\mathbf{x})$ such that

$$
f\left(\mathbf{x}_{i}\right) \begin{cases}\geq 0 & y_{i}=+1 \\ <0 & y_{i}=-1\end{cases}
$$

i.e. $y_{i} f\left(\mathbf{x}_{i}\right)>0$ for a correct classification.

Linear Separability

$$
\begin{aligned}
& \mathbf{\Delta A}_{\Delta} \mathbf{\Delta}^{\mathbf{\Delta}}
\end{aligned}
$$

Linear Classifier

A linear classifier has the form

$$
f(x)=x \theta+\theta_{0}
$$

- in 2D the discriminant is a line
- θ is the normal to the line, and θ_{0} e bias
- θ is known as the weight vector

Linear Classifier (higher dimension)

A linear classifier has the form

$$
f(x)=x \theta+\theta_{0}
$$

- in 3D the discriminant is a plane, and in nD it is a hyperplane

The Perceptron Classifier

Considering \boldsymbol{x} is linearly separable and \boldsymbol{y} has two labels of $\{-1,1\}$

$$
f\left(x_{i}\right)=x_{i} \theta \quad \text { Bias is inside } \theta \text { now }
$$

How can we separate datapoints with label 1 from datapoints with label -1 using a line?

Perceptron Algorithm:

- Initialize $\theta=0$
- Go through each data point $\left\{x_{i}, y_{i}\right\}$
- If x_{i} is misclassified then $\theta^{t+1} \leftarrow \theta^{t}+\alpha \operatorname{sign}\left[f\left(x_{i}\right)\right] x_{i}$
- Until all datapoints are correctly classified
- Initialize $\theta=0$
- Go through each datapoint $\left\{x_{i}, y_{i}\right\}$
- If x_{i} is misclassified then $\theta^{t+1} \leftarrow \theta^{t}+\alpha \operatorname{sign}\left(f\left(x_{i}\right)\right) x_{i}$
- Until all datapoints are correctly classified
before update

after update

Linear separation

We can have different separating lines

All cases, error is zero and they are linear, so they are all good for generalization.

What is the Best θ ?

- maximum margin solution: most stable under perturbations of the inputs

Perceptron

 example

- if the data is linearly separable, then the algorithm will converge
- convergence can be slow...
- separating line close to training data
- we would prefer a larger margin for generalization (better generalization)

Outline

- Precursor: Linear Classifier and Perceptron
- Support Vector Machine
- Parameter Learning

Finding θ with a fat margin

Solution (decision boundary) of the line: $x \theta=0$

Let $\boldsymbol{X}_{\boldsymbol{i}}$ to be the nearest data point to the line (plane):

$$
\left|x_{i} \theta\right|>0
$$

Our line solution is $x \theta=0$
Does it matter if I scale up or down θ for the decision boundary?

$$
\begin{gathered}
\qquad x_{i} \theta \mid=1 \rightarrow \text { normalization } \\
\text { Let's pull out } \theta_{0} \text { from } \theta=\left(\theta_{1}, \ldots, \theta_{d}\right) \text { and call it be } b \\
\text { Decision boundary would be: } x \theta+b=0
\end{gathered}
$$

Computing the distance

The distance between $\boldsymbol{x}_{\boldsymbol{i}}$ and the plane $x \theta+b=0 \quad$ where $\left|x_{i} \theta+b\right|=1$

The vector θ is perpendicular to the decision boundary plane.

You should ask me why?

Consider x^{\prime} and $x^{\prime \prime}$ on the plane

- x_{i}

$$
x^{\prime} \theta+b=0 \quad \text { and } \quad x^{\prime \prime} \theta+b=0
$$

$$
\left(x^{\prime}-x^{\prime \prime}\right) \theta=0
$$

What is the distance?

What is the distance between x_{i} and the plane?
Let's take any point x on the plane:
Distance would be projection of $\left(x_{i}-x\right)$ vector on θ.

To project the vector, we need to normalize θ to get the unit vector.

$$
\hat{\theta}=\frac{\theta}{\|\theta\|} \Rightarrow \text { distance }=\left|\left(x_{i}-x\right) \hat{\theta}\right| \text { which is the dot product }
$$

$$
\text { distance }=\frac{1}{\|\theta\| \mid}\left|\left(x_{i} \theta-x \theta\right)\right|
$$

$$
=\frac{1}{\|\theta\|}\left|\left(x_{i} \theta+b-x \theta-b\right)\right|
$$

The margin

Now we need to maximize the margin

Maximize $\quad \frac{2}{\|\theta\|}$

$$
\text { Subject to } \quad y_{i}\left(x_{i} \theta+b\right) \geq 1 \text { for }
$$

$$
i=1,2, \ldots, N
$$

Minimize $\quad \frac{1}{2} \theta \theta^{T}$
Subject to $\quad y_{i}\left(x_{i} \theta+b\right) \geq 1$ for

$$
i=1,2, \ldots, N
$$

Constrained optimization

Minimize $\quad \frac{1}{2} \theta \theta^{T}$

$$
\begin{aligned}
& \text { Subject to } y_{i}\left(x_{i} \theta+b\right) \geq 1 \text { for } \quad i=1,2, \ldots, N \\
& \theta \in \mathbb{R}^{d}, b \in \mathbb{R}
\end{aligned}
$$

Using Lagrange method:

But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem

$$
\begin{aligned}
& g(x)=y_{i}\left(x_{i} \theta+b\right)-1 \\
& \gamma=\text { lagrange multiplier }
\end{aligned} \quad-\text { ККТ } \rightarrow \begin{array}{ll}
g(x) \gamma=0 \\
\text { w.r.t Maximize } \gamma \geq 0
\end{array} \quad \Rightarrow\left\{\begin{array}{cc}
g(x)>0, & \gamma=0 \\
g(x)=0, & \gamma>0
\end{array}\right.
$$

Lagrange formulation

Minimize

$$
\begin{gathered}
\frac{1}{2} \theta \theta^{T} \quad \text { s.t. } \quad y_{i}\left(x_{i} \theta+b\right)-1 \geq 0 \\
\mathcal{L}(\theta, b, \alpha)=\frac{1}{2} \theta \theta^{T}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(x_{i} \theta+b\right)-1\right)
\end{gathered}
$$

$$
\text { ze w.r.t } \theta \text { and } b \text { and maximize w.r.t each } \alpha_{i} \geq 0
$$

$$
\text { KKT condition: } \alpha_{i} \geq 0 \text { and } \alpha_{i}\left(y_{i}\left(x_{i} \theta+b\right)-1\right)=0
$$

$$
\begin{gathered}
\nabla_{\theta} \mathcal{L}(\theta, b, \alpha)=\theta-\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}=0 \\
\nabla_{b} \mathcal{L}(\theta, b, \alpha)=-\sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{gathered}
$$

$\sum_{i=1}^{N} \alpha_{i} y_{i}=0$

Let's substitute these in the Lagrangian:

$$
\begin{gathered}
\mathcal{L}(\theta, b, \alpha)=\frac{1}{2} \theta \theta^{T}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(x_{i} \theta+b\right)-1\right) \\
\mathcal{L}(\theta, b, \alpha)=\sum_{i=1}^{N} \alpha_{i}+\frac{1}{2} \theta \theta^{T}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(x_{i} \theta+b\right)\right) \\
\mathcal{L}(\theta, b, \alpha)=\sum_{i=1}^{N} \alpha_{i}+\frac{1}{2} \theta \theta^{T}-\sum_{i=1}^{N} \alpha_{i}\left(y_{i}\left(x_{i} \theta\right)\right)=\sum_{i=1}^{N} \alpha_{i}+\frac{1}{2} \theta \theta^{T}-\theta \theta^{T}= \\
=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \theta \theta^{T}
\end{gathered}
$$

$$
\theta=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \quad \sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

$$
\mathcal{L}(\theta, b, \alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \theta \theta^{T}
$$

$$
\mathcal{L}(\theta, b, \alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j}^{T}
$$

maximize w.r.t each $\alpha_{i} \geq 0$ for $i=1, \ldots, N$
and

$$
\sum_{i=1}^{N} \alpha_{i} y_{i}=0
$$

The solution - quadratic programming

$$
\max \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j}^{T}
$$

Quadratic programming packages usually use "min"

$$
\min _{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j}^{T}-\sum_{i=1}^{N} \alpha_{i}
$$

$$
\min _{\alpha} \frac{1}{2} \alpha^{T}\left[\begin{array}{cccc}
y_{1} y_{1} x_{1} x_{1}^{T} & y_{1} y_{2} x_{1} x_{2}^{T} & \cdots & y_{1} y_{N} x_{1} x_{N}^{T} \\
y_{2} y_{1} x_{2} x_{1}^{T} & y_{2} y_{2} x_{2} x_{2}^{T} & \cdots & y_{2} y_{N} x_{2} x_{N}^{T} \\
\cdots & \cdots & \cdots & \cdots \\
y_{N} y_{1} x_{N} x_{1}^{T} & y_{N} y_{2} x_{N} x_{2}^{T} & \cdots & y_{N} y_{N} x_{N} x_{N}^{T}
\end{array}\right] \alpha+\left(-I^{T}\right) \alpha
$$

$$
\min _{\alpha} \frac{1}{2} \alpha^{T}\left[\begin{array}{cccc}
y_{1} y_{1} x_{1} x_{1}^{T} & y_{1} y_{1} x_{1} x_{2}^{T} & \cdots & y_{1} y_{N} x_{1} x_{N}^{T} \\
y_{2} y_{1} x_{2} x_{1}^{T} & y_{2} y_{2} x_{2} x_{2}^{T} & \cdots & y_{2} y_{N} x_{2} x_{N}^{T} \\
\cdots & \cdots & \cdots & \cdots \\
y_{N} y_{1} x_{N} x_{1}^{T} & y_{N} y_{2} x_{n} x_{2}^{T} & \cdots & y_{N} y_{N} x_{N} x_{N}^{T}
\end{array}\right] \alpha+\left(-I^{T}\right) \alpha
$$

$$
\min _{\alpha} \frac{1}{2} \alpha^{T} Q \alpha-1^{T} \alpha \quad \text { subject to } \quad y^{T} \alpha=0 ; \alpha \geq 0
$$

Quadratic programming will give us α

$$
\text { Solution: } \alpha=\alpha_{1}, \ldots, \alpha_{N}
$$

KT condition $\left(\alpha_{i} g_{i}(\theta)=0\right)$:

$$
\alpha_{i}\left(y_{i}\left(x_{i} \theta+b\right)-1\right)=0
$$

$$
\begin{array}{rll}
\left(y_{i}\left(x_{i} \theta+b\right)-1\right)>0 & \Rightarrow &
\end{array} \alpha_{i}=0.10 x_{i} \text { is a support vector }
$$

Class 2
Class 1

Training

Testing

$$
\theta=\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i}
$$

For a new test point s

Compute:

No need to go over all datapoints

$$
\rightarrow \theta=\sum_{x_{i} i n S V} \alpha_{i} y_{i} x_{i}
$$

$$
\mathrm{s} \theta+\mathrm{b}=\sum \alpha_{i} y_{i} x_{i} s^{T}+b
$$

$$
x_{i} \mathrm{in} S V
$$

Classify s as class 1 if the result is positive, and class 2 otherwise

Geometric Interpretation

linearly separable data

From x to z space

$$
\max _{\alpha} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j}^{T}
$$

$$
\begin{gathered}
\text { let's s say } x \text { is } n \times d \\
x \mathrm{x}^{\mathrm{T}} \text { will be } \mathrm{n} \times n
\end{gathered}
$$

If I add millions of dimensions to \mathcal{X}, would it affect the final size of $x \mathrm{x}^{\mathrm{T}}$?

In z space

$\max _{\alpha} \sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} z_{i} z_{j}^{T}$

In x space, they are called pre-images of support vectors

Take-Home Messages

- Linear Separability
- Perceptron
- SVM: Geometric Intuition and Formulation

