Machine Learning CS 4641-B Summer 2020

Lecture 12. Principle Component Analysis Xin Chen

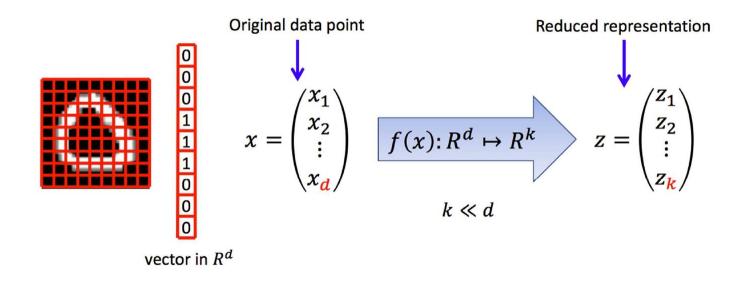
These slides are based on slides from Mahdi Roozbahani

Outline

- Overview 🗲
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

What is Dimension reduction?

- The process of reducing the number of features under the consideration:
 - One can combine, transform or select features
 - One can use linear and nonlinear operations



Applications of the dimension reduction

- The dimension-reduced data can be used for:
 - Visualizing, exploring and understanding the data
 - Aggregating weak signals in the data
 - Cleaning the data
 - Speeding up subsequent learning tasks
 - Building simpler model later
- Key questions of a dimensionality reduction algorithm
 - What is the criterion for carrying out the reduction process?
 - What are the algorithm steps?

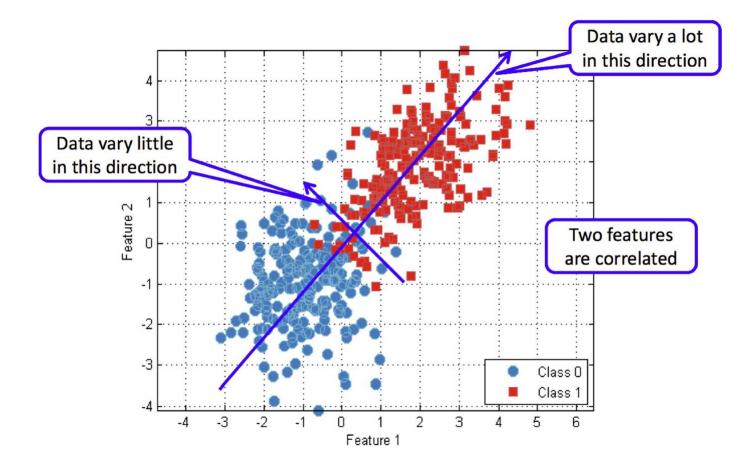
Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

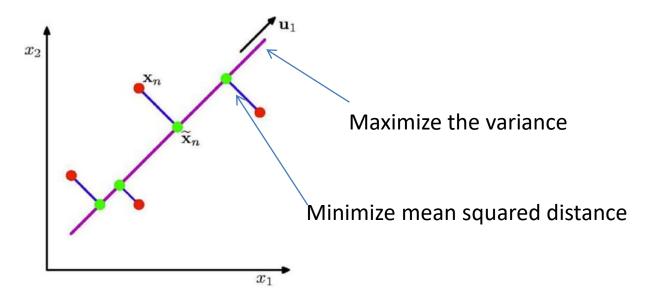
PCA: Dimension reduction by capturing variation

- There are many criteria, geometric based, information theory based, etc.
- One criterion: want to capture variation in data
 - Variations are "signals" or "useful" information in the data
 - Need to normalize each variable first
- In the process, also discover variables or dimensions highly correlated
 - Represent highly related phenomena
 - Combine them to form a stronger signal
 - Lead to simpler presentation

Capture Variation in Data



Two perspective of Principal Component Analysis (PCA)



- Orthogonal projection of the data onto a lowerdimension linear space that
 - Maximize variance of projected data
 - Minimize mean squared distance between the data points and projections.

Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

Formulating the problem

Given *n* data points, $\{x_1, x_2, x_3, ..., x_n\} \in \mathbb{R}^d$, with their mean $u = \frac{1}{n} \sum_{i=1}^n x_i$

Find a direction
$$w \in R^d$$
, where $||w|| = \sqrt{\sum_{j \in d} \omega_j^2} = 1$

We constrain the norm of *w* to be equal to 1, to avoid having very large variance in each new dimension.

Formulating the problem

Given *n* data points, $\{x_1, x_2, x_3, ..., x_n\} \in \mathbb{R}^d$, with their mean $u = \frac{1}{n} \sum_{i=1}^n x_i$

$$|\mathbf{w}|| = \sqrt{\sum_{j \in d} \omega_j^2} = 1$$

Optimization target: the variance of the data along direction w is maximized. $max \frac{1}{n} \sum_{i=1}^{n} (x_i w - uw)^2$

Variance in new feature space.

Formulate it as an optimization problem

Manipulate the objective with linear algebra

$$\frac{1}{n} \sum_{i=1}^{n} (x_i w - \mu w)^2 = \frac{1}{n} \sum_{i=1}^{n} ((x_i - \mu) w)^2 =$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left((x_i - \mu) w \right)^T ((x_i - \mu) w) = \frac{1}{n} \sum_{i=1}^{n} w^T (x_i - \mu)^T (x_i - \mu) w$$

$$(AB)^T = B^T A^T$$

$$w^T \left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^T (x_i - \mu) \right) w = w^T C w$$

Covariance matrix

Equivalence to the eigenvalue problem

- Claim max $w^T C w$
- Form lagrangian function of the optimization problem $L(w, \lambda) = w^T C w + \lambda (1 w^T w)$
- If w is a maximum of the original optimization problem, then there exists a λ , where (w, λ) is a stationary point of $L(w, \lambda)$
- This implies that $\frac{\partial L}{\partial w} = 0 = 2Cw 2\lambda w \Rightarrow Cw = \lambda w$

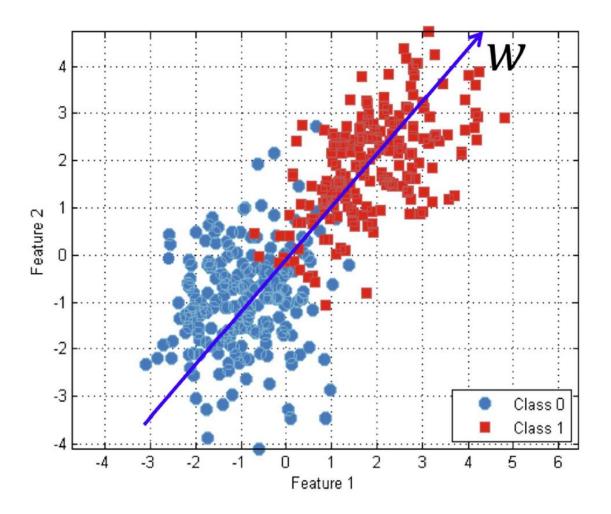
Eigen value problem

- Eigen-value problem
 - Given a symmetric matrix $C \in R^{d \times d}$
 - Find a vector $w \in \mathbb{R}^d$ and ||w|| = 1
 - Such that $Cw = \lambda w$

• There will be multiple solutions of the eigenvectors w_1, w_2, \dots of C corresponding to the largest eigenvalue $\lambda_1, \lambda_2, \dots, \lambda_d$

- They are ortho-normal: $w_i^T w_i = 1, w_i^T w_j = 0$

Principle direction of the data



Variance in the principle direction

- Principle direction w satisfies $Cw = \lambda w = w\lambda$
- Variance in principle direction is $w^T C w = w^T w \lambda = \lambda$ Eigen value

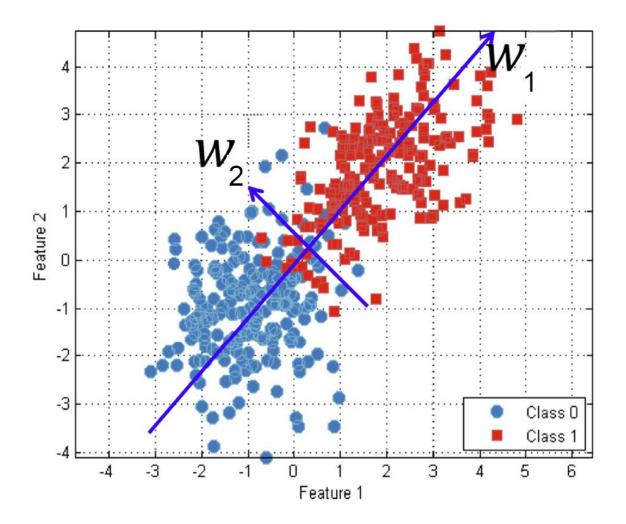
Multiple principle directions

- Directions w_1, w_2, \dots which has
 - The largest variances
 - But are orthogonal to each other

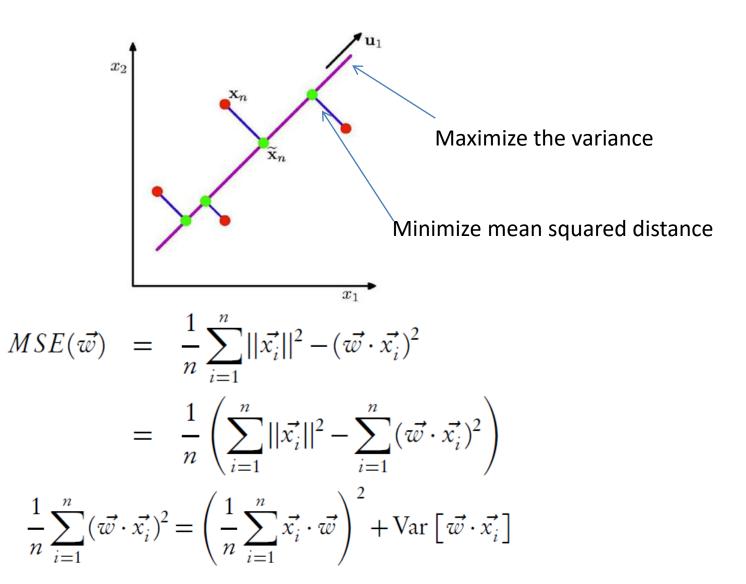
- Take the eigenvectors w_1, w_2, \dots of C corresponding to
 - The largest eigenvalue λ_1
 - The second largest eigenvalue λ_2

— ...

Extra principle directions



Remember the two perspectives



Relations between principle components

- Principle component #1: points in the direction of largest variance.
- Each subsequent principle component
 - Is orthogonal to the previous ones, and
 - Points in the directions of the largest variance of the residual subspace.

The PCA algorithm

Given *n* data points, $\{x_1, x_2, x_3, ..., x_n\} \in \mathbb{R}^d$, with their mean $u = \frac{1}{n} \sum_{i=1}^n x_i$

Step 1: Estimate the mean and covariance matrix from data, $C = \frac{1}{n} \sum_{i=1}^{n} (x_i - u)^T (x_i - u)$

Step 2: Take the eigenvectors $w_1, w_2, ...$ of *C* corresponding to the largest eigenvalue λ_1 , the second largest eigenvalue $\lambda_2, ...$

Step 3: Compute reduced representation

$$z_i = \left(\frac{(x_i - u_1)}{\sigma_1} w_1 \frac{(x_i - u_2)}{\sigma_2} w_2 \dots\right) \qquad \qquad \begin{array}{c} z = n \times k \\ k < d \end{array}$$

Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

Singular Value Decomposition

 $X_{n \times d}$ n: instances d: dimensions X is a centered matrix

 $X = U\Sigma V^T$

 $U_{n \times n} \rightarrow unitary \ matrix \rightarrow U \times U^T = I$ $\Sigma_{n \times d} \rightarrow diagonal \ matrix$

According to PCA $\rightarrow Cw = \lambda w = w\lambda$

Covariance
$$C_{d \times d} = \frac{1}{n} \sum_{i=1}^{n} (x^i - \mu)^T (x^i - \mu) = \frac{X^T X}{n}$$

$$X = U\Sigma V^{T}$$

$$C = \frac{X^{T}X}{n}$$

$$C = \frac{V\Sigma^{T}U^{T}U\Sigma V^{T}}{n} = \frac{V\Sigma^{2}V^{T}}{n}$$

$$C = \frac{V\Sigma^2 V^T}{n} = V \frac{\Sigma^2}{n} V^T$$

$$CV = V \frac{\Sigma^2}{n} V^T V = V \frac{\Sigma^2}{n}$$

According to Eigen-decomposition definition $\Rightarrow CV = V\Lambda$

V is the eigen vectors of covariance (Principal directions)

$$\lambda_i = \frac{\sigma_i^2}{n}$$
 \rightarrow The eigenvalues of covariance matrix

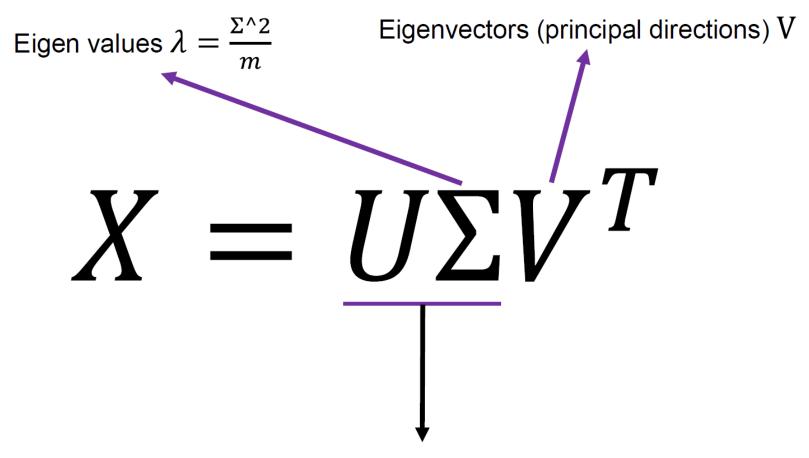
Let's project the data (X) on principal directions:

$$XV = U\Sigma V^T V = U\Sigma$$

XV is independent linear combinations of the original data

Projection of one instance (x) on the first principal direction using k dimensions

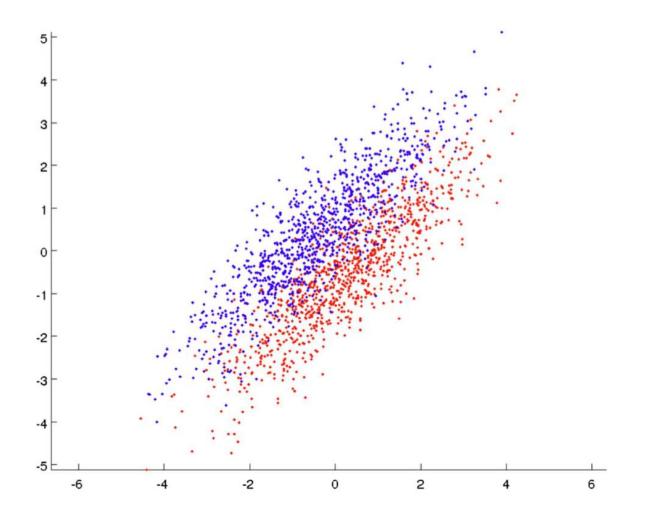
$$\begin{aligned} \mathbf{p}_1 &= \left[u_{1 \times 1} \Sigma_{1 \times 1} , \, u_{1 \times 2} \Sigma_{2 \times 2} , \, \dots , \, u_{1 \times k} \Sigma_{k \times k} \right] \\ \mathbf{p}_2 &= \left[u_{2 \times 1} \Sigma_{1 \times 1} , \, u_{2 \times 2} \Sigma_{2 \times 2} , \, \dots , \, u_{2 \times k} \Sigma_{k \times k} \right] \\ & \Sigma \Rightarrow k \times k \\ \text{Upper left corner} \end{aligned}$$



Principal components (Scores) or projections on principal directions

 In fact, using the SVD to perform PCA makes better sense numerically than performing the covariance matrix, since the calculating x^T x can cause loss of precision.

Are principal components good for classification?



Why PCA potentially works in classification?

- The dimension with the largest variance corresponds to the dimension and thus encodes the most information (information theory).
- The smallest eigenvectors often simply represent noise components.