Lecture 12. Principle Component Analysis
 Xin Chen

Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

What is Dimension reduction?

- The process of reducing the number of features under the consideration:
- One can combine, transform or select features
- One can use linear and nonlinear operations

Applications of the dimension reduction

- The dimension-reduced data can be used for:
- Visualizing, exploring and understanding the data
- Aggregating weak signals in the data
- Cleaning the data
- Speeding up subsequent learning tasks
- Building simpler model later
- Key questions of a dimensionality reduction algorithm
- What is the criterion for carrying out the reduction process?
- What are the algorithm steps?

Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

PCA: Dimension reduction by capturing variation

- There are many criteria, geometric based, information theory based, etc.
- One criterion: want to capture variation in data
- Variations are "signals" or "useful" information in the data
- Need to normalize each variable first
- In the process, also discover variables or dimensions highly correlated
- Represent highly related phenomena
- Combine them to form a stronger signal
- Lead to simpler presentation

Capture Variation in Data

Two perspective of Principal Component Analysis (PCA)

- Orthogonal projection of the data onto a lowerdimension linear space that
- Maximize variance of projected data
- Minimize mean squared distance between the data points and projections.

Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

Formulating the problem

Given n data points, $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \in R^{d}$, with their mean $u=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Find a direction $\mathrm{w} \in R^{d}$, where $\|\mathrm{w}\|=\sqrt{\sum_{j \in d} \omega_{j}^{2}}=1$

We constrain the norm of w to be equal to 1 , to avoid having very large variance in each new dimension.

Formulating the problem

Given n data points, $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \in R^{d}$, with their mean $u=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

$$
||\omega||=\sqrt{\sum_{j \in d} \omega_{j}^{2}}=1
$$

Optimization target: the variance of the data along direction w is maximized. $\max \frac{1}{n} \sum_{i=1}^{n}\left(x_{i} w-u w\right)^{2}$

Variance in new feature space.

Formulate it as an optimization problem

Manipulate the objective with linear algebra

$$
\begin{aligned}
& \quad \frac{1}{n} \sum_{i=1}^{n}\left(x_{i} w-\mu w\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\left(x_{i}-\mu\right) w\right)^{2}= \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\frac{\left(x_{i}-\mu\right)}{A} \frac{w)^{T}}{B}\left(\left(x_{i}-\mu\right) w\right)=\frac{1}{n} \sum_{i=1}^{n} w^{T}\left(x_{i}-\mu\right)^{T}\left(x_{i}-\mu\right) w\right. \\
& \quad(A B)^{T}=B^{T} A^{T} \\
& w^{T}\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{T}\left(x_{i}-\mu\right)\right) w=w^{T} C w
\end{aligned}
$$

Covariance matrix

Equivalence to the eigenvalue problem

- Claim $\max w^{T} C w$
- Form lagrangian function of the optimization problem $L(w, \lambda)=w^{T} C w+\lambda\left(1-w^{T} w\right)$
- If w is a maximum of the original optimization problem, then there exists a λ, where (w, λ) is a stationary point of $\mathrm{L}(\mathrm{w}, \lambda)$
- This implies that $\frac{\partial L}{\partial w}=0=2 C_{w}-2 \lambda w \Rightarrow C_{w}=\lambda w$

Eigen value problem

- Eigen-value problem
- Given a symmetric matrix $C \in R^{d \times d}$
- Find a vector $\mathrm{w} \in R^{d}$ and $||w||=1$
- Such that $C w=\lambda w$
- There will be multiple solutions of the eigenvectors w_{1}, w_{2}, \ldots of C corresponding to the largest eigenvalue $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$
- They are ortho-normal: $w_{i}^{T} w_{i}=1, w_{i}{ }^{T} w_{j}=0$

Principle direction of the data

Variance in the principle direction

- Principle direction w satisfies

$$
C w=\lambda w=w \lambda
$$

- Variance in principle direction is

$$
w^{T} C w=w^{T} w \lambda=\lambda
$$

Eigen value

Multiple principle directions

- Directions w_{1}, w_{2}, \ldots which has
- The largest variances
- But are orthogonal to each other
- Take the eigenvectors w_{1}, w_{2}, \ldots of C corresponding to
- The largest eigenvalue λ_{1}
- The second largest eigenvalue λ_{2}
- ...

Extra principle directions

Remember the two perspectives

$$
\begin{aligned}
& 2 \\
& \operatorname{MSE}(\vec{w})=\frac{1}{n} \sum_{i=1}^{n}\left\|\overrightarrow{x_{i}}\right\|^{2}-\left(\vec{w} \cdot \overrightarrow{x_{i}}\right)^{2} \\
& =\frac{1}{n}\left(\sum_{i=1}^{n}\left\|\overrightarrow{x_{i}}\right\|^{2}-\sum_{i=1}^{n}\left(\vec{w} \cdot \overrightarrow{x_{i}}\right)^{2}\right) \\
& \frac{1}{n} \sum_{i=1}^{n}\left(\vec{w} \cdot \overrightarrow{x_{i}}\right)^{2}=\left(\frac{1}{n} \sum_{i=1}^{n} \overrightarrow{x_{i}} \cdot \vec{w}\right)^{2}+\operatorname{Var}\left[\vec{w} \cdot \overrightarrow{x_{i}}\right]
\end{aligned}
$$

Relations between principle components

- Principle component \#1: points in the direction of largest variance.
- Each subsequent principle component
- Is orthogonal to the previous ones, and
- Points in the directions of the largest variance of the residual subspace.

The PCA algorithm

Given n data points, $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} \in R^{d}$, with their mean $u=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Step 1: Estimate the mean and covariance matrix from data,
$C=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-u\right)^{T}\left(x_{i}-u\right)$

Step 2: Take the eigenvectors w_{1}, w_{2}, \ldots of C corresponding to the largest eigenvalue λ_{1}, the second largest eigenvalue λ_{2}, \ldots

Step 3: Compute reduced representation
$z_{i}=\left(\frac{\left(x_{i}-u_{1}\right)}{\sigma_{1}} w_{1} \frac{\left(x_{i}-u_{2}\right)}{\sigma_{2}} w_{2} \ldots\right)$

$$
\begin{gathered}
z=n \times k \\
k<d
\end{gathered}
$$

Outline

- Overview
- Main idea of Principle Component Analysis (PCA)
- PCA algorithm
- PCA and SVD
- Summary

Singular Value Decomposition

n : instances
$X_{n \times d} \quad \mathrm{~d}$: dimensions
X is a centered matrix

$$
\begin{gathered}
U_{n \times n} \rightarrow \text { unitary matrix } \rightarrow U \times U^{T}=I \\
X=U \Sigma V^{T} \\
\Sigma_{n \times d} \rightarrow \text { diagonal matrix } \\
X=\left[\begin{array}{ccccc}
u_{1 \times 1} & \ldots & \ldots & \ldots & u_{1 \times n} \\
\vdots & \ddots & \ldots & \ldots & \vdots \\
\vdots & \vdots & \ddots & \ldots & \vdots \\
\vdots & \vdots & \ldots & \ddots & \vdots \\
u_{1 \times 1} & \ldots & \ldots & \ldots & u_{n \times n}
\end{array}\right] \times\left[\begin{array}{ccc}
\sum_{1 \times 1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sum_{d \times d} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{ccccc}
v_{1 \times 1} & \ldots & \ldots & \ldots & v_{1 \times d} \\
\vdots & \ddots & \ldots & \ldots & \vdots \\
\vdots & \vdots & \ddots & \ldots & \vdots \\
\vdots & \vdots & \ldots & \ddots & \vdots \\
v_{d \times 1} & \ldots & \ldots & \ldots & v_{d \times d}
\end{array}\right] \\
\Sigma
\end{gathered}
$$

According to PCA $\rightarrow C w=\lambda w=w \lambda$

Centering X

$$
\text { Covariance } C_{d \times d}=\frac{1}{n} \sum_{i=1}^{n}\left(x^{i}-\mu\right)^{T}(\overbrace{}^{i}-\mu)=\frac{X^{T} X}{n}
$$

$$
\begin{aligned}
& X=U \Sigma V^{T} \\
& C=\frac{X^{T} X}{n}
\end{aligned} \quad-C=\frac{V \Sigma^{T} U^{T} U \Sigma V^{T}}{n}=\frac{V \Sigma^{2} V^{T}}{n}
$$

$$
C=\frac{V \Sigma^{2} V^{T}}{n}=V \frac{\Sigma^{2}}{n} V^{T}
$$

$$
\begin{aligned}
& C V=V \frac{\Sigma^{2}}{n} V^{T} V=V \frac{\Sigma^{2}}{n} \\
& \text { Eigen-decomposition definition } \rightarrow C V=\mathrm{V} \Lambda
\end{aligned}
$$

V is the eigen vectors of covariance (Principal directions)
$\lambda_{i}=\frac{\sigma_{i}^{2}}{n} \rightarrow$ The eigenvalues of covariance matrix

Let's project the data (X) on principal directions:

$$
X V=U \Sigma V^{T} V=U \Sigma
$$

$\boldsymbol{X} \boldsymbol{V}$ is independent linear combinations of the original data

Projection of one instance (x) on the first principal direction using k dimensions

$$
\begin{array}{ll}
\mathrm{p}_{1}=\left[u_{1 \times 1} \Sigma_{1 \times 1}, u_{1 \times 2} \Sigma_{2 \times 2}, \ldots, u_{1 \times k} \Sigma_{k \times k}\right] & \\
\mathrm{p}_{2}=\left[u_{2 \times 1} \Sigma_{1 \times 1}, u_{2 \times 2} \Sigma_{2 \times 2}, \ldots, u_{2 \times k} \Sigma_{k \times k}\right] & U \Rightarrow n \times k \\
& \sum \Rightarrow k \times k \\
\text { Upper left corner }
\end{array}
$$

Eigen values $\lambda=\frac{\Sigma^{\wedge} 2}{m}$
Eigenvectors (principal directions) V
X

=

- In fact, using the SVD to perform PCA makes better sense numerically than performing the covariance matrix, since the calculating $x^{T} x$ can cause loss of precision.

Are principal components good for classification?

Why PCA potentially works in classification?

- The dimension with the largest variance corresponds to the dimension and thus encodes the most information (information theory).
- The smallest eigenvectors often simply represent noise components.

