Machine Learning CS 4641-B Summer 2020

Lecture 11. Gaussian mixture model Xin Chen

These slides are based on slides from Mahdi Roozbahani

Outline

- Overview
- Gaussian mixture model
- The expectation-maximization algorithm

Recap

Conditional Probabilities:

$$p(A,B) = p(A|B)p(B) = p(B|A)p(A)$$

Bayes rule:

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{p(B|A)p(A)}{p(B)}$$

$$p(A = 1) = \sum_{i=1}^{K} p(A = 1, B_i) = \sum_{i=1}^{K} p(A = 1|B_i)p(B_i)$$

A simple example

	Tomorrow=Rainy	Tomorrow=Cold
Today=Rainy	4/9	2/9
Today=Cold	2/9	1/9
P(Tomorrow)	[4/9 + 2/9] = 2/3	[2/9 + 1/9] = 1/3

P(Tomorrow = Rainy) =

Hard clustering can be difficult

 Hard clustering: K-means, hierarchical clustering, DMSCAN

Toward soft clustering

- K-means
 - Hard assignment: each data point belongs to only one cluster
- Mixture modeling
 - Soft assignment: probability that a data point belongs to a cluster

Comparison

- Hard clustering
 - It is an assignment of x_n to a single cluster. It selects a mode of the conditional distribution $argmax \ p(z_n = k | x_n)$
- Soft clustering
 - It assigns a probability π_{nk} for data point x_n to each cluster k.

Outline

- Overview
- Gaussian mixture model 🗲
- The expectation-maximization algorithm

Gaussian Distribution

$$N(\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

What is Gaussian?

• For d dimensions, the Gaussian distribution of a vector $x = (x^1, x^2, ..., x^n)^T$ is defined by $N(x|\mu, \Sigma) = \frac{1}{2\pi^{d/2}\sqrt{|\Sigma|}} \exp(\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)),$ where μ is the mean, Σ is the covariance matrix of the Gaussian.

Gaussian Mixture Models (GMM)

• Formally a mixture model is the weighted sum of a number of probability density function (pdf), where the weights are determined by a distribution, π

$$p(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \dots + \pi_k f_k(x),$$

where $\sum_{i=0}^k \pi_i = 1$
$$p(x) = \sum_{i=0}^k \pi_i f_i(x)$$

 π_i is the unknown probability of selecting component i

Some notes

- Is summation of a bunch of Gaussians a Gaussian itself?
 - -p(x) is a Probability density function or it is also called a marginal distribution function
 - -p(x)=the density of selecting a data point from the pdf which is created from a mixture model. Also, we know that the area under a density function is equal to 1.

Mixture models are generative

- Generative simply means dealing with joint probability p(x, z)
- Let's say f(.) is a Gaussian distribution

$$p(x) = \sum_{k=0}^{n} \pi_k f_k(x)$$

$$p(x) = \pi_0 N(x|u_0, \sigma_0) + \pi_1 N(x|u_1, \sigma_1) + \dots + \pi_k N(x|u_k, \sigma_k)$$

$$p(x) = \sum_{\substack{k=0\\K}}^{K} \pi_k N(x|u_k, \sigma_k)$$

$$p(x) = \sum_{\substack{k=0\\K=0}}^{K} p(z_k) p(x|z_k)$$

$$z_k \text{ is component } k$$

$$p(x) = \sum_{\substack{k=0\\K=0}}^{K} p(x, z_k)$$

- What is the probability of a data point *x* in each component?
- How many components we have here?
- How many probability?
- What is the sum of the 3 probabilities for each data point?

How to calculate the probability of data points in the first component? $p(x) = \pi_0 N(x|u_0, \sigma_0) + \pi_1 N(x|u_1, \sigma_1) + \pi_2 N(x|u_2, \sigma_2)$

Let's calculate the responsibility of the first component among the rest Let's call that au_0

 $\tau_{0} = \frac{N(X|\mu_{0},\sigma_{0})\pi_{0}}{N(X|\mu_{0},\sigma_{0})\pi_{0} + N(X|\mu_{1},\sigma_{1})\pi_{1} + N(X|\mu_{2},\sigma_{2})\pi_{2}}$ $\tau_{0} = \frac{p(x|z_{0})p(z_{0})}{p(x|z_{0})p(z_{0}) + p(x|z_{1})p(z_{1}) + p(x|z_{1})p(z_{1})}$ $p(x,z_{0}) \qquad p(x,z_{0})$

$$\tau_0 = \frac{p(x, z_0)}{\sum_{k=0}^{k=2} p(x, z_k)} = \frac{p(x, z_0)}{p(x)} = p(z_0 | x)$$

Inferring cluster membership

- We have representations of the joint $p(x, z_{nk}|\theta)$ and the marginal, $p(x|\theta)$
- The conditional of $p(x, z_{nk}|\theta)$ can be derived using Bayes rule.
 - The responsibility that a mixture component takes for explaining an observation x.

 z_{nk} represents the latent component indicator or latent cluster k for data point x_n

$$p(x|z_{nk}) = N(x|u_k, \sigma_k)$$

$$\tau(z_{nk}) = p(z_{nk}|x) = \frac{p(z_{nk})p(x|z_{nk})}{\sum_{j=1}^{K} p(z_{ij})p(x|z_{ij})} = \frac{\pi_k N(x|u_k, \sigma_k)}{\sum_{j=1}^{K} \pi_j N(x|u_j, \sigma_j)}$$

Mixtures of Gaussians

- What is the probability of picking a mixture component (Gaussian model)? $p(z_k) = \pi_k$
- What is the probability of picking data from that specific mixture component? $p(x|z_k)$

Note z_k is a **latent variable**. We only observe x, but z_k is hidden

$$p(x, z_k) = p(x|z_k)p(z_k) \qquad p(x, z_k) = \pi_k N(x|u_k, \sigma_k)$$

Generative model, because of joint distribution

What are GMM parameters?

Mean u_k , Variance: σ_k , Proportion: π_k

$$p(x, z_k) = p(x|z_k)p(z_k) = \pi_k N(x|u_k, \sigma_k)$$

- p(z_k|θ) = π_k select a mixture component with probability π_k
 p(x|z_k) = N(x|u_k, σ_k) sample from the component's Gaussian.

GMM with graphical model concept

Why having "Latent variable"

- A variable can be unobserved (latent) because:
 - **O** it is an imaginary quantity meant to provide some simplified and abstractive view of the data generation process.
 - e.g., speech recognition models, mixture models (soft clustering)...
 - **O** it is a real-world object and/or phenomena, but difficult or impossible to measure
 - e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...
 - O it is a real-world object and/or phenomena, but sometimes wasn't measured, because of faulty sensors, etc.
- Discrete latent variables can be used to partition/cluster data into sub-groups.
- Continuous latent variables (factors) can be used for dimensionality reduction (factor analysis, etc).

Latent variable representation

$$p(\mathbf{x}|\theta) = \sum_{k} p(x, z_{nk}|\theta) = \sum_{k} p(z_{nk}|\theta) p(x|z_{nk}, \theta) = \sum_{k=0}^{K} \pi_k N(x|\mu_k, \Sigma_k)$$

v

$$p(z_{nk}|\theta) = \prod_{k=1}^{K} \pi_k^{z_{nk}} \qquad p(x|z_{nk},\theta) = \prod_{k=1}^{K} \left(N(x|\mu_k,\Sigma_k)\right)^{z_{nk}}$$

Why having the latent variable?

The distribution that we can model using a mixture of Gaussian components is much more expressive than what we could have modeled using a single component.

Define latent variable

For a point x_i , let the cluster to which that point belongs be labeled z_i . z_i is a latent variable, which is unobserved.

The density of a univariate Gaussian Mixture Model with three Gaussian mixture components, each with their own mean and variance terms (K = 3, d = 1). [Source: http://prateekvjoshi.com]

Multimodal distribution

- What if we know the data consists of a few Gaussians.
- What if we want to fit parametric models?

Gaussian mixture model

- A density model p(x) may be multi-modal: model it as a mixture of unimodal distribution (e.g. Gaussians).
- Consider a mixture of K Gaussians

Learn mean u_k , Variance: σ_k , Proportion: π_k

Learning GMM parameters

Maximum likelihood estimation

$$argmax \ p(x|\theta) = \prod_{i=1}^{N} p(x_i|\theta) = \prod_{i=1}^{N} \sum_{k=1}^{K} \pi_k N(x_i|u_k, \sigma_k)$$

$$\log \left(p(x|\theta) = \sum_{i=1}^{N} \ln \{\sum_{k=1}^{K} \pi_k N(x_i|u_k, \sigma_k) \}$$

The fundamental difficulty is that the parameters are coupled.

$$\log(p(x|\theta) = \sum_{i=1}^{N} \log\{\sum_{k=1}^{K} p(x_i|z_k)|p(z_k)\} \quad \mathbf{z_{nk}} \text{ Latent variable}$$

Now we assume that $\tau(z_{nk}) = p(z_{nk}|x)$ is known.

Estimate the mean in GMM

$$\ln p(x|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k,\Sigma_k) \right\}$$
$$\frac{\partial \ln p(x|\pi,\mu,\Sigma)}{\partial \mu_k} = \sum_{n=1}^{N} \frac{\pi_k N(x_n|\mu_k,\Sigma_k)}{\sum_j \pi_j N(x_n|\mu_j,\Sigma_j)} \Sigma_k^{-1}(x_k-\mu_k) = 0$$
$$= \sum_{n=1}^{N} \tau(z_{nk}) \Sigma_k^{-1}(x_k-\mu_k) = 0$$
$$\mu_k = \frac{\sum_{n=1}^{N} \tau(z_{nk}) x_n}{\sum_{n=1}^{N} \tau(z_{nk})}$$

Estimate the variance in GMM

$$\ln p(x|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k N(x_n|\mu_k,\Sigma_k) \right\}$$

$$\Sigma_k = \frac{1}{\sum_{n=1}^N \tau(z_{nk})} \sum_{n=1}^N \tau(z_{nk}) (x_n - \mu_k) (x_n - \mu_k)^T$$

Estimate the mixing term in GMM

$$\ln p(x|\pi, \mu, \Sigma) + \lambda \left(\sum_{k=1}^{K} \pi_k - 1\right)$$

$$0 = \sum_{n=1}^{N} \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_j \pi_j N(x_n | \mu_j, \Sigma_j)} + \lambda$$

$$\pi_k = \frac{\sum_{n=1}^N \tau(z_{nk})}{N}$$

Parameter results

Note that all these based on the assumption that $\tau(z_{nk})$ is known, which is our guess. How to guess?

Outline

- Overview
- Gaussian mixture model
- The expectation-maximization algorithm

Estimating GMM parameters with Expectation-Maximization (EM)

- EM is a general algorithm to deal with hidden variable.
- Two steps:
 - E-step: Fill in hidden values using inference
 - M-step: Apply standard MLE method to estimate parameters
- EM always converges to a local minimum of the likelihood.

E-step for GMM

We assume that $\theta^t = (\pi_k, u_k, \sigma_k)$ are known, and then take the expectation of the latent variable with the current values of our parameters.

Posterior expectation $E(z_{nk}) \propto \pi_k N(x_n | u_k, \sigma_k)$, posterior probability of data x_n belonging to cluster k

$$E(z_{nk}) = \frac{\pi_k N(x_n | u_k, \sigma_k)}{\sum_{j=1}^K \pi_j N(x_n | u_j, \sigma_j)}$$

$$\tau(z_{nk}) = \frac{\pi_k N(x_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(x_n | \mu_j, \Sigma_j)}$$

M-step for GMM

$$Q(\theta^t) = \sum_{i=1}^n \sum_{k=1}^K E[z_{nk}] \log \pi_k + E[z_{nk}] \log N(x_n | u_k, \sigma_k)$$

Based on the assumption that $\theta^t = (\pi_k, u_k, \sigma_k)$, we need to update θ^t with $\theta^{t+1} = argmax(Q(\theta^t))$.

•
$$u_k^{t+1} = \frac{\sum_{n=1}^N \tau(z_{nk})^t x_n}{\sum_{n=1}^N \tau(z_{nk})^t}$$

• $\Sigma_k^{t+1} = \frac{1}{\sum_{n=1}^N \tau(z_{nk})^t} \sum_{n=1}^N \tau(z_{nk})^t (x_n - u_k^t) (x_n - u_k^t)^T$
• $\pi_k^{t+1} = \frac{\sum_{n=1}^N \tau(z_{nk})^t}{N}$

Expectation-Maximization for GMMs

- Initialize π_k , u_k , σ_k arbitrarily.
- Alternate until convergence
 - (E-step) Expectation step: compute soft class membership, with the current parameters: $\tau_{nk} = \tau(z_{nk}) = p(z_{nk}|x, \pi_k, (u_k, \sigma_k))$
 - (M-step) Maximization step: Update parameters by plugging in τ_{nk} (our guess)

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

General form of EM

- Given a joint distribution over observed variables and latent variables: $p(x, z | \theta)$
- Want to maximize: $p(x|\theta)$
- 1. Initialize parameters: θ^{old}
- 2. E-step, evaluate $p(z|x, \theta^{old})$
- 3. M-step, re-estimate parameters (based on expectation of complete-data log likelihood):

$$\theta^{new} = argmax_{\theta} \sum p(z|x, \theta^{old}) \ln p(x, z|\theta)$$

Comparison between GMM and K-Means

- Soft clustering and hard clustering
 - K-means assigns data point to a single cluster, while GMM assigns probability of observations belonging to each cluster.
- GMM assumes Gaussian model with joint probability, while K-means has no underlying probability model.
- Relationship between GMM and K-Means
 - K-means, unlike GMM, learns equal-sized cluster, where $\pi_k = \frac{1}{\kappa}$
 - In GMM, we set $\pi_k = \frac{1}{K}$ and set the largest probability to 1 and the rest to 0. Then GMM is equivalent to K-means.

An example of comparing K-means with EM

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm