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Homework 4 has been released. It covers the two previous
lectures.
Instructions for the Project presentation have been released.
Check Piazza for details.
Make sure to contribute to Piazza/Lecture discussions.
This is the final lecture.
Grading of HW1, HW2, Project Proposal is complete.
HW3 grading to be completed soon.
Project presentations moved by 1 week.

* Presentation due the 27, report the 29,
No office hours, but make sure to create a Private Piazza
post if you need to reach out to me.
Course website has been updated to reflect some of these:
https://mimoralea.qgithub.io/cs4641B-summer2020/



https://mimoralea.github.io/cs4641B-summer2020/
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Outline
Policy-based Methods

66 There is no better than adversity. Every defeat, every 99
heartbreak, every loss, contains its own seed, its own lesson on
how to improve your performance the next time.

— Malcolm X
American Muslim minister and
Human Rights activist.
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Policy-based Methods

Policy-based, value-based and actor-critic methods

1

(1) Last three chapters
you were here.

(2) You are here for the
next two sections.

T

(3) And here through
the end of the chapter.

;

Policy-based | Actor-critic Value-based | ¢—
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Value-based vs. Policy-based objectives

22~ SHow ME THE MATH
Value-based vs. policy-based methods objectives

(1) Invalue-based methods, the 5
objective is to minimize the loss L; (92) — Es,a [(qﬂ(sj a,) — Q(S, a; 92)) ]
function, which is the mean squared

error between the true Q-function J
and the parameterized Q-function.

— (2) In policy-based methods the objective

is to maximize a performarnce measure,
which is the true value-function of the

Ji (93) L ]ESO ~Po [vﬂei (80 )] ¢ parameterized policy from all initial states.
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Policy-based methods motivation

Learning stochastic policies could get us out of trouble

(1) Consider a Foggy Lake environment in which we don't slip like in
‘ the Frozen Lake, but instead we can't see which state we're in.

S|—| | |«
AnEE
— = |

—|—| G

(2) If we could see well in

|, everystate, the optimal
policy would be something
like this.

- .

_ B

(3) If we couldnt see in
these two states, the

— optimal action in these
states would be something

like 50% left and %50 right.

START

(4) The more partially
observable, the more

— complex the probability
distribution to learn for
optimal action selection.



Deriving the policy gradient

22~ SHow ME THE MATH
Deriving the policy gradient

(1) First, let's bring a simplified version of the L

objective equation a couplloe of pages back. | y J(0) =Espnp, [UW" (SO)]
(2) We know what we want is to find the gradient

with respect to that performance metric. — ¥ 0J(0) = Vo Esoup, [UWQ (30)]
(3) To simplify notation, let’s use Tau as a variable

representing the full trajectory. —» 7 = Sy, Ao, R1,51,.--,8917-1, AT—1, RT, ST
(4) This way we can abuse notation and use

the G function to obtain the return of the full

trajectory. | » G(7) = Ri + vR2+, ...,—I—’)/T_lRT

(5) We can also get the probability of a trajectory.

(0) This is just the probability of thee initial states, then the action, then the transition and so
on until we have the product of all the probabilities that make the trajectory likely. F——3,

P»p(7|ma) = po(So)m(Ao|So; 0)P(S1, R1lSo, Ao)...P(ST, Rr|ST-1, AT-1)

(7) After all that notation change, we .

can say that the objective is this. —p Vo Erar, |G(T)| = Vo Esgmp, |Vme(S0)
(&) Next, let’s look at a way for

estimating gradients of expectations,

called the score function gradient |_’ Vg Ey [f(x)] =E, [VG 10gp(x|9)f($)]

estimator. |

(9) With that identity, we can o
substitute values and get. I—DVO B [G(T)] = Ernr, [Vo logp(T‘WO)G(T)]

— (10) Notice the dependence on the T
probability of the trajectory. |
(171) Now, if we substitute the probability of trajectory, take the logarithm, turn products into
the sum and differentiate with respect to theta, all dependence of the transition functionis
drops, and we are left with a function that we can work with. |

0
VoE m, [G(T)] 1D ZVg log m(A¢|St; mo)G(T) | &——
=0

http://blog.shakirm.com/2015/11/machine-learning-trick-
of-the-day-5-log-derivative-trick/
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http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

Using future rewards only

Reducing the variance of the policy gradient

It’s useful to have a way to compute the policy gradient without knowing anything about the
environment’s transition function. This algorithm increases the log-probability of all actions
in a trajectory, proportional to the goodness of the full return. In other words, we first

collect a full trajectory and calculate the full discounted return, then use that score to weight
the log-probabilities of every action taken in that trajectory: A, A, .., A

Let’s use only rewards consequence of actions

t+1 " T-1°

(1) This is somewhat counterintuitive
because we are increasing the likelihood
of action A, in the same proportion than
i action A, even if the return after A is
greater than the return after A, We
know we can't go back in time and current
actions are not responsible for past
reward. We can do something about that.

S, G(tau) =12 (assume gamma of 1)

28 SHow ME THE MATH

Reducing the variance of the policy gradient

(1) This is the gradient we try to estimate in the REINFORCE algorithm coming up next.

T
L VoJ(0) = Eroor > Gi(1)Velog mo(As|St)
I t=0

(2) Alithis  (3) Then, for each step L (4) And use that value as
is sayingis, inthe trajectory, we the score to weight the
we sample a calculate the return log-probability of the action
trajectory. fromthat step. taken at that time step.
Georgia &
Tech
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Using future rewards only

Reducing the variance of the policy gradient

It’s useful to have a way to compute the policy gradient without knowing anything about the
environment’s transition function. This algorithm increases the log-probability of all actions
in a trajectory, proportional to the goodness of the full return. In other words, we first

collect a full trajectory and calculate the full discounted return, then use that score to weight
the log-probabilities of every action taken in that trajectory: A, A, ..., A

Let’s use only rewards consequence of actions

t+1 " T-1°

(1) This is somewhat counterintuitive
because we are increasing the likelihood
of action A, in the same proportion than
i action A, even if the return after A is
greater than the return after A, We
know we can't go back in time and current
actions are not responsible for past
reward. We can do something about that.

S G(tau) =12 (assume gamma of 1)

28 SHow ME THE MATH

Reducing the variance of the policy gradient

(1) This is the gradient we try to estimate in the REINFORCE algorithm coming up next.

T
L VoJ(0) = Eroor > Gi(1)Velog mo(As|St)
I t=0

(2) Alithis  (3) Then, for each step L (4) And use that value as

is sayingis, inthe trajectory, we the score to weight the

we sample a calculate the return log-probability of the action
trajectory. fromthat step. taken at that time step.

Tech

This is an agent called REINFORCE Georgia@
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Vanilla Policy Gradient: How about learning a value function?

Two neural networks, one for the policy, one for the value function

(1) The policy Policy network Value network  (2) The value network
network we use we use for the cart-

for the cart-pole pole environment is
environment is the 4-node input as well,
same exact as we representing the state,
use in REINFORCE: a and a 1-node output,
4-node input layer, represented the value of
and a 2-node output that state. This network
layer. | provide \ output the expected
more details on the ' return from the input
experiments later. I—I

1 state. More details soon.

2s  SHow ME THE MATH

Losses to use for VPG
N

(1) This is the loss for the value function. It's 1 2
simple, the mean squared Monte-Carlo error. B L, (¢) = N Z (Gt — V(St; ¢))
(2) The loss of T Mo stz g n=0
e boloyie i ; d)vani:; ma (4) Log-probability of the (5) The weighted
' Il action taken. Il entropy term.
1 N
La(0) = =% > | (Gu = V(Si;9) ) log m(Au|S13 0) + BH (n(130))
(&) Negative n=0 tl
because we ; (7) Mean over $0) By

oo is good.
are minimizing. the samples.



Outline

Actor-Critic Methods

44 Criticism may not be agreeable, but it is necessary. It fulfills the 9%
same function as pain in the human body. It calls attention to an

unhealthy state of things.
— Winston Churchill
British politician, army officer, writer, and G .
Prime Minister of the United Kingdom e%-'égclla‘ !L
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Actor-Critic Methods

é L WitH AN RL Accent
REINFORCE, Vanilla Policy Gradient, Baselines, Actor-Critic

Some of you with prior DRL exposure may be wondering, is this a so-called “actor-critic”? It's
learning a policy and a value-function, so it seems it should be. Unfortunately, this is one of
those concepts where the “RL accent” confuses newcomers. Here’s why.

First, according to one of the fathers of RL, Rich Sutton, policy-gradient methods
approximate the gradient of the performance measure, whether or not they learn an
approximate value-function. However, David Silver, one of the most prominent figures

in DRL, and a former student of Sutton disagrees. He says that policy-based methods do

not additionally learn a value function, only actor-critic methods do. But, Sutton further
explains that only methods that learn the value-function using bootstrapping should be
called actor-critic, because it's bootstrapping what adds bias to the value function, and thus
makes it a“critic’ | like this distinction, therefore, REINFORCE and VPG, as presented in this
book, are not considered actor-critic methods. But beware of the lingo, it's not consistent.
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A3C: Parallel policy updates

(1) In ABC, we Asynchronous model updates (2) After an
create multiple experience batch
worker-learners.— Worker 1 Worker 2 Worker n is collected, each
Each of them @ @ @ worker updates
creates an the global model
instance of the C D C D C D asynchronously,

environment, without

and the policy coordination with
and V-function Policy ) ( V-function ){ Policy V-function Policy )( V-function other workers.
neural network Then, they reload
weights use \ / their copy of the

for generating | models and keep

‘ . Global ]
‘ Global policy '
experiences. atit.
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A3C: Using n-step bootstrapping estimates

ss  SHow ME THE MATH

Using n-step bootstrapping estimates

(1) Before we were using full returns | » A(Ss, Ag; 0) = Gy — V(Sy; 6)

for our advantage estimates.
(2) Now, we are using n-step
returns, with bootstrapping. | ~

A(St, At; @) = Ry + YRep1 + oo + 7" Rign + YTV (Stins1; ) — V(St; ¢)
(3) We now use this n-step advantage
estimate for updating the action probabilities. 1
1 N

N

n=0

Ln(6) =

A(Sy, Ag; @) log m(As|St; 0) + BH (m(S; ‘9))]

(4) We also use the n-step return to improve the value function estimate. Notice
the bootstrapping here. This is what makes the algorithm an actor-critic method.

N
1 2
L,(¢) = N E (Rt + YRty + oo + Y " Riar, + Y"1V (Stina1; ) — V(Se; ¢)) ]
n=0
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One of the most critical aspects of A3C is that its network updates are
asynchronous and lock-free.

Having a shared model creates a tendency for competent software engineers to
want a blocking mechanism to prevent workers from overwriting other updates.
Interestingly, A3C uses an update-style called a Hogwild!, which is being shown
not only to achieve a near-optimal rate of convergence but also outperform
alternative schemes that use locking by an order of magnitude.



GAE: TD(lambda) target for advantages

SHow ME THE MATH

Possible policy-gradient estimators

(1) In policy-gradient and actor-critic methods,
we are trying to estimate the gradient of the

following form. y g=E Z W Vg logm(A4|St; 0)

t=0
. ]

<+ (2) We can replace Psi for a number of expressions that
estimate the score with different levels of variance and bias.

(3) This one is the (4) But as we did in (5) As we did in VPG, we
total return starting REINFORCE, we can start at can use a baseline, which
from step O, all the the current time step, and in our case was the
way to tl?F end. j goto the end of the episode. state-value function. >—‘-|
| T
t — N
\I’t = 27 Rt Z’)’t thf \IJt = Z’)/t th/ = b(St)
t=0 t'=t =
(©) In A3C, we used (7) But, we (&) Or eventhe TD
the n-step advantage could also use residual, which can be
estimate, which is the the true action- se€en as a one-step

lowest variance. value function. advantage estimate.
| | Georgia @
Uy = ar(St, As) Uy = qr(St, As) Uy = Ry 4+ v (Se41) — v (St) Tech

CREATING THE NEXT



GAE: GAE(lambda), GAE(0), GAE(1)

SHow ME THE MATH
GAE is a robust estimate of the advantage function
AN(S1, Ay 8) = Ry + 9V (Si1;0) = V(Si¢) & () Notepadvantage
; 5 estimates. j
A%(Sy, At;¢) = Ry + YRiq1 + 7V (Ser2; 6) — V(Si; 9)
A3(Sy, Ay @) = Ri + YRiv1 + 72 Rega + ¥V (Sei3;0) — V(Si; 8)

A™(St, Ay; @) = Ry + YRip1 + oo + Y Regnn + YTV (Sttn1;6) — V(Si; 0)

(2) Which we can mix to make an estimate oS
analogous to TD lambda but for advantages. 1 AGAE () (S, Ag; @) = Z(")’)\)l(St.‘_l
(3) Similarly, alambda of | =

O returns the one-step

[=0
advantage estimate, AGAE(%O)(SM A; ) = Ry + 7V(5t+15 @) — V(St; ¢)
and a lambda of 1

returns the infinite-step AGAE(’Y’l) Sy At, Z flet_*_l St§ ¢)

advantage estimate. |

Georg|a
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GAE: How to train V?

se  SHow ME THE MATH

Possible value targets

(1) Notice we can use several different targets to train the state- T )

value function neural network use to calculate GAE values. Y = Z fyt _thl‘
(2) We could use the reward to go, ak.a. Monte-Carlo returns. f——p
(3) The n-step
bootstrapping target,
including the TD target.
(4) Or tghe GAE, as agTD(lambda) estimate. H» Yt = ACGAE() (St, Ag; @) + V(S; ¢)

t'=t

T i AP Sy e o S A e, E ”)’n+1V(St+n+1; })
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A2C: Synchronous policy updates

(1) In AZC, we have a single
agent driving the interaction
with the environment. But, in
this case the environment is

a multi-process class that
gathers samples from multiple

' Gllultlprocess EnD
environments at once. b———

— “— Galue functioD

Synchronous model updates

Worker 1 Worker 2 Worker n

@ @ @
~1

(2) The neural networks
now need to process
batches of data. Which
means in A2C we can take
| advantage of GFPUs, unlike

ASC in which CPUs are the
most important resource.
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A2C: Weight sharing model

Sharing weights between policy and value outputs

() 4— Value output

4—1 Policy outputs «—— (1) We can share a few layers of the network

in policy-gradient methods, too. The network
would look just like the Dueling network you
implemented in chapter 9 with outputs the
size of the action space and another output
for the state-value function.
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More policy-based and actor-critic methods

 DDPG: Deep Deterministic Policy Gradient
« TD3: Twin Delayed DDPG

« SAC: Soft-Actor Critic
 TRPO: Trust-Region Policy Optimization
« PPO: Proximal Policy Optimization

Gegrrgiﬁ @
https://github.com/mimoralea/qgdrl ec -



https://github.com/mimoralea/gdrl

Outline

Advanced DRL Topics

Our ultimate objective is to make programs that learn 9
from their experience as effectively as humans do.

— John McCarthy
Founder of the field of Artificial Intelligence

Inventor of the Lisp programming Language
PpPred 9 -anguag Georgia @
Tech
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Transfer learning

_l_—'

(1) Lots of
people think
you need a
high-fidelity
simulation to
transfer and
agent from
simulation to
the real world,
but that is, in
fact, not truel

Sim-to-real transfer learning task
is a common need in the real world

Domain randomization in Better generalization at
simulation at training time test time in the real world

’ 1
@ e (3) Then, the
real-world looks

just like another
variation of the
simulation.

(2) What works better is to have a flexible simulator
50 that you can randomize the parameters during
training, and the agent is forced to generalize better.



Multi-task learning

[ »
(1) Multi-tasks
learning is the
transfer of a
policy trained
in multiple
tasks, either
simultaneously
or sequentially,
to another
task.

Multi-task learning consists of training on
multiple related tasks, and testing on a new one

Multiple related
tasks at training time

(2) Inthis example, I use 4 different end effectors,
but in reality, the task doesnt need to be too
different. This could be very related tasks.

Better generalization

at test time

g

(2) The idea

is the agent
should perform
better at the
target tasks,
either with no
or some fine-
tuning.



Curriculum learning: Learn on progressively more difficult tasks.

Meta learning: Learning to learn. How to solve a task with n-shot trials (including zero-shot).
Hierarchical reinforcement learning: Learning a hierarchy of policies.

Multi-agent reinforcement learning: How does the challenge change when multiple agents are
learning simultaneously?

Explainable Al, Safety, Fairness, Ethical Standards: How to we make sure we are preparing for the
inclusion of Al systems to our daily lives?
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