Bandit Problems and Model-

free Reinforcement Learning

=l CS 4641 B: Machine Learning (Summer 2020)
N |
Miguel Morales

07/08/2020

Georgia &

Tech

=

Outline

Bandit Problems
Prediction Problem
Control Problem

Georgia
Tech

EEEEEEEEEEEEEEEE

—

Uncertainty and expectation are the joys of life. 9%
Security is an insipid thing.

— William Congreve
English playwright and poet of the Restoration period
and political figure in the British Whig Party

eorgia
qrgia)

CREATING THE NEXT

* Planning methods assume we
have a “map” of the by
environment. But what if we ; ()

don't? T

- We need to explore to gain
information about the
environment. Exploration

» But exploring cause us to _ _/ NP4

missed opportunities we could
otherwise exploit.

* There is a tradeoff between ' '
exploration and exploration.

« Multi-armed bandits (MAB) are a
special case of a RL problem in
which the size of the state space
and horizon equal one.

- MAB have multiple actions, a single [’ [<> @”7 [@ \4 @]
state, and a greedy horizon; you — =

can also think of it as a "“many- (1) A 2-armed bandit is a decision-making
OptionS Sing le-choice” problem with two choices. You need to try
environment. them both sufficient to correctly asses

each option. So, how do you best hand the

* The name comes from slot exploration-exploitation tradeoff?

machines (bandits) with multiple
arms to choose from (more
realistically: multiple slot machines
to choose from).

Bandit Problems

¢ SHow ME THE MATH
Multi-armed bandit

(1) MABs are MDFs with a single non-terminal state, and a single time st_lqp per episode.
LN 3
MAB = MDP(S ={s},A,T,R,So ={s},y=1H=1)
(2) The Q-function of action ais p—p q(a,) —]E[Rt‘At — a]
y N

the expected reward | T
given awas sampled. |

(3) The best we can do in a MAB is represented

Vs = @ (a*) — maxgq (a) by the optimal V-function, or selecting the
acA action that maximizes the Q-function.
4 (4) The optimal action, is the action

that maximizes the optimal Q-function, -
and optimal V-function (only 1 state). Q(CL*) — Ux

a, = argmaxq(a)
acA

Slippery Bandit Walk environment

(1) The leftmost
state is a hole, and
provides a O reward.

S

1

G

2

(2) The rightmost
state is the goal, and
provides a +1 reward.

(1) Remember: a hole, starting, and goal state

T

T

Greedy strategy: Always exploit

1stiteration

— Agent
a=0|a=1

(1) The actionis index of the Q@) [o [| & argmax(Q=0
element with highest value (first +
element when there are ties). |

- Environment

0.2
. +1
222 0.2@ ?8 > - Reward = +1 &———
2nd iteration (2) Let’s pretend the environment
- A goes through this transition and the
gent agent getsthe +1. |
a=0]a=1

(3) Agent selects Q) | * | © [-»argmax(Q)=0
action O again. | =p

— Environment

0.2
+1
Ol's . o.z@ - > - Reward=0 ¢——
3rd iteration L (4) Environment goes through this

(5) As you can see the - Agent transition and gives a O reward. F———

agent is already stuck a=0|a=1
withaction O. > Qa) |05 | o | argmax(Q=0

Random strategy: Always explore

1stiteration
—» Agent

o n
o

dom_action =1
(1) Agent selects action 1, Q(a) - rar)r _

uniformly at random. |

= Environment - I (2) Consider this transition.
0.2
X +1
= 0_2@ ?8 > —» Reward =0

2nd iteration

—» Agent
a=0|a=1

(3) Agent selects action 1, Q) | o | o | -»random_action =1
again. | 2

- Environment (4) Consider this transition.

0.2
+1
= 0.2@ = b —» Reward = +1
3rd iteration
. . (5) Now agent

(©) Agent willcontinueto = Agent select action O.
select actions randomly a=0[a=1
with total disregard for —— Q(a) | © | o5 | = random_action =0
the estimates! (7) Note, the estimates will converge to

the optimal values with enough episodes.

Epsilon-Greedy strategy: Always always greedy,
sometimes random

1stiteration

- Agent (1) The agent selects
2-0lact | action O greedily.

Q) —» argmax(Q) =0

o
o

— Environment

0.2
8 1
e 02@ :]8 > —» Reward = +1 &—
2nd iterati
ndteration ; (2) The environment goes
- Agent through this transition
2-0lac and gives a +1 reward. F——

o

(3) The agent selects action Q@) [! - random‘Faction =1

1, this time randomly. |

—» Environment (4) Consider (5) The agent
02 f this transition. receives a +1
reward.
— Reward = +1 4—|_|
(6) Suppose the

agent now selects 3rd iteration N ’
action O, and likely i (7) Combining exploration
starts getting Os. - Agent l and exploitation ensures

the agent doesn't get
a=0]|a=1
stuckinbad estimates.

-

» Q) | ! —» argmax(Q) =0

Recap: Bandit Problems

5
®

Exploration Exploitation

Recommended reading.
Reinforcement Learning: An introduction (chapter 2)
http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html

Outline

Prediction Problem

6§ !conceive that the great part of the miseries 9
of mankind are brought upon them by false
estimates they have made of the value of things.

— Benjamin Franklin
Founding Father of the United States Georgia !L

an author, politician, inventor, and a civic activist. Tech|)
CREATING THE NEXT

 Estimate the value of policies;
evaluate policies under feedback
that is simultaneously sequential
and evaluative.

 This is not policy optimization
but is equally important for
finding optimal policies.

« Having perfect estimates makes
policy improvement trivial.

Terminology recap

4 WitH AN RL Accent
RL

Reward vs. Return vs. Value function

Reward: Refers to the one-step reward signal the agent gets: the agent observes a state,
selects an action, and it receives a reward signal. The reward signal is the core of RL, but it
is not what the agent is trying to maximize! Again, the agent is not trying to maximize the
reward! Realize that while your agent maximizes the one-step reward, in the long-term, is
getting less than it could.

Return: Refers to the total discounted rewards. Returns are calculated from any state

and usually go until the end of the episode. That is when a terminal state is reached the
calculation stops. Returns are often referred to as total reward, cumulative reward, sum of
rewards, and are commonly discounted: total discounted reward, cumulative discounted
reward, sum of discounted reward. But, it is basically the same: a return tells you how much
reward your agent obtained in an episode. As you can see, returns are better indicators

of performance because they contain a long-term sequence, a single-episode history

of rewards. But the return is not what an agent tries to maximize, either! An agent that
attempts to obtain the highest possible return may find a policy that takes it through a
noisy path; sometimes, this path will provide a high return, perhaps most of the time a low
one.

Value function: Refers to the expectation of returns. That means, sure, we want high returns,
but high in expectation (on average). So, if the agent is in a very noisy environment, or if
the agent is using a stochastic policy, it's all just fine. The agent is trying to maximize the

expected total discounted reward, after all: value functions.)
Georgia ﬁ
Tech |

CREATING THE NEXT

(1) Transition function is totally random! |

Monte-Carlo prediction

r—l (©6) Anepisode e, a trajectory S, A,..R, S,
with a return G, _of 1.

—O—m

&1 (5) The numbers are rewards.
L Assume O if missing.

2
(4) The squares are terminal states.

—J (3 Thedots
4 are actions.
(1) The state (2) The circles are non-terminal states.
whose value function
we are currently estimating.

(7) What is a good estimate of V (5)? 0.4

Monte-Carlo prediction equations

(1) WARNING: I'm heavily abusing notation to make sure you get the whole picture. In specific,
you need to notice when each thing is calculated. For instance, when you see a subscript t:7,
that just means it is derived from time step t until the final time step, T.When you see T, that
means it is computed at the end of the episode at the final time step T.

o= 1 (2) As a reminder, the action-value
function is the expectation of returns.
Ur (S) - ETF [Gt:T | St - S] This is a definition good to remember.
1 (3) And the returns are the total
l discounted reward.

Gyt = Riy1 + YRiso + ...+ 'Ry

— (4) So, in MC, the first thing we do is sample the policy for a trajectory. F—g,
(5) Given that brajectory. - Sy Ay, Ryt1, St41, .oy By ST ~ T

we can calculate the return

forall d.

orall states encountere TT (St) — TT (St) _|_ Gt:T
(6) Then, add up the per-state returns. |-I

(7) And, increment a count (more on this later.) F—p NT (St) — NT (St) + 1
Tr(St)

(8) We can simply estimate the expectation using the
empirical mean. So, the estimated state-value function V (S) —
for a state is just the mean return for that state. F—> T\t

N7 (S%)
(9) As the counts approach infinity, — v
theestimatewillappr'oachthetruevalue|_| N(S) — OO V(S) —: 'Uﬂ-(S)

(10) But, notice that means can be calculated incrementally. So, there is no need to keep
track of the sum of returns for all states. This equation is equivalent, just more efficient. J

Vr(S:) = Vr—1(Se) + ﬁ [Gt:T — VT—l(St)]

(11) On this one, we just replace the mean for a learning

value that can be time dependent, or constant. lj MC
error
h’ Vr(St) = Vr-1(St) + av | Ger & Vr-1(St)

(12) Notice that V is calculated only at the end of MC
an episode, time step T, because G depends on it. —— target

Temporal-Difference Learning

(1) Inisis all we need to

estimate the return Gtr — . .
; 7Y A deeat toryS,A,..R, 5

That's the key insight of TD. | l \Evnzh :riilj:n 28 jf ;‘2”66 OrY 2y Ap Re 2p

” N £ »

©) The numbers are the rewards.
) i
—/ 4
-—" . (4) The dots (5) The squares are terminal states.
4 are actions.
(é) The state (3) The circles are non-terminal states.

whose value function

we are currently estimating.
(8) What is a good estimate of V (S,)¢ Still 0.472

Temporal-Difference Learning equations

(1) We again start from the definition of the Ur (3) — E’/T [Gt:T l St — S]

state-value function. |
(2) And the definition of the return.

L » Gr.r = Rey1 +YRip2 + .+ 'Ry

(3) From the return, we can rewrite the equation by grouping up some terms. Check it out.
2 T—1
Ger = Riy1 +vRiv2 + v Reys + ... +7 Ry
T-—2
= Riy1 +7(Rig2 +7Rey3 + ... +9° “Rr)

= Rt_|_ 1 ‘|— ’)’Gt_}_l :T" 4 (4) Now, the same return has a recursive style.

(5) We can use this new definition to also rewrite the state-value function definition equation.

- —3
Vr(8) = Ex[Grr | St = 5]
= E;[Ri+1 + YGiq1.7 | St = §]

(6) And because the
expectation of the
returns from the next
state is simply the
state-value function of

l—-’ = Eﬂ- :Rt+1 ar ’}/?)W(ng_l) | St = S] thenext_rstate,weget.

state-value function on every time step.

(7) This means we could estimate the
Sty Aty Rit1, 5141 ”‘F Te:t4-1

(8) We roll out a single interaction step. |

(9) And can obtain an estimate V(s)of ~ (10) The key difference to realize is we are now

the true state-value function v (s) a estimating v (s) with an estimate of v (s,). We
different way than with MC. are using an estimated, not an actual return.
TD
error

Veir(S) = Vi(St) + ot | Regr +7Vi(Sri1) —Va(Se

>y

~
TD
target
1 (171) A big win is we can now make updates to the
state-value function estimates V/(s) every time step.

)

MC vs. TD learning

TaLwy IT Up
MC and TD both nearly converge to the true state-value function

(1) Here I'l be showing only First-Visit Monte-Carlo prediction (FYMC) and Temporal-Difference
Learning (TD). If you head to the Notebook for this chapter, you'll also see the results for Every-
Visit Monte-Carlo prediction, and some additional plots that may be of interest to youl

I 10 FVMC estimates through time vs. true values ﬁ
| M S vn(5)
0.8 7V
o »
2 I! *‘\ A /"‘J“*I“' A i e = i e VTI(4)
2) — V(s
50l Y 7
o g il vii(3)
=) i #(um V(3)
2 x e -=- V(2)
z o4 ',al' H ;‘\l" YW (O I PSS P SR vn(2) — V1)
< H ‘: T ,'Mm \,‘,‘\':\1 SV LT
8 i 1
N A vn(1)
H W
0.0
0 100 200 300 400 500

Episodes
(2) Take a close look at these plots. These are the running state-value function
estimates V(s) of an all-left policy in the Random Walk environment. As you can

see in these plots, both algorithms show near-convergence to the true values. ———
(3) Now, see the difference trends of these algorithms. FYMC running estimates
are very noisy, they jump back and forth around the true values.

TD estimates through time vs. true values

—— W wn(s)

0.8 [N
LA .
.5 H M A LA Jo n(4)
9] Al
c 0.6 : e
F tl vn(3) —- V(4
5 | v(3)
o4 i . g
% | ;‘ﬁh“‘\f‘\ Vm-‘wm‘ -------- ——— — v
2 : .
902 ’I i)
W p
1=l
0.0 y
0 100 200 300 400 500
Episodes

(4) TD running estimates don't jump as much, but they are off center for most of the
H episodes. For instance V(5) is usually higher than v (5), while V(1) is usually lower than
v (1). But if you compare those values with FYMC estimates, you notice a different trend.

(1) If we get a close-up (log-scale

Tarwy It Up

MC estimates are noisy, TD estimates off target
MC
error

plot) these trends, you will see

——N—
Vir (St) = VT—l(St) + oy | Ger _VT—l(St) what's happening. MC estimates

Jjump around the true values. This is

ti\fg%t Q—I_| because of the high variance of the
MC targets.

(2) A couple of FVMC estimates through time vs. true values (log scale)
pros though; first A AM
A I A, vn(5)
you can see all 08 i T W‘
estimatesget § AN Y e
2 \ ke .
close to their true £ o6 LA b ey 1§ — o)
2 A ‘-,'/ Vv vn(3) —-- V(4)
values veryearly g =T R vi3)
- =~ i \It'll LAY e .
@ik D - i ." AN PR vn(2) —_ \\;ﬁ:
[¥ T v e
Also, the] N /\"'“r'" W
estimates jump Po2__ P MWW vn(1)
= = :

around the true 3
0.0

values. 5 i
Episodes

TD

error

—
Vit1(St) = Vi(Se) + o | Grier1 —Vi(St)
~——

target
'S

(3) TD estimates are off target most
of the time, but they are less jumpy.
This is because TD targets are low
variance, though biased. They use an
estimated return for target.

]

(4) The bias TD estimates through time vs. true values (log scale)
shows, too. In the M\M‘v\m—\
vn(5)

end, TD targets 08

AT A i

give up accuracy in § A S it —vn(4)

8 — !
orderto become Eos ; N — vo)

5

a = N vn(3) Vi)
more precise. g 7 vi3)
Also, they take 204 Vi) - liii
i I 1 T A

abit long before & Ji P i

Vo2 - L vn(1)

estimates ramp
up, at least in this

10!

environment. o
Episodes

Tawwy IT Up
MC targets high variance is evident, TD targets bias, too

ﬁ (1) Here we can see the bias/variance

tradeoff between MC and TD targets.

Gy = Riv1 +YRiyo + ... + ’YT_IRT Remember, the MC target is the return,
which accumulates a lot of random noise.
That means high variance targets.

(2) These plots are l
showing the targets for 10

the initial state in the RW
environment. MC targets,
the returns, are either O
or 1 because the episode
terminates either on the
left, with a O return or on
the right, with b 1 return, 02
while the optimal value is

0.5!

FVMC target sequence

o
@

o
o

v(3)

Target value
o
S

100 400 500

200 300
Estimate sequence number

(3) TD targets are calculated using an estimated
| return. We use the value function to predict how

much value we will get from the next state onwards.
This helps us truncate the calculations and get more
estimates per episode (as you can see on the x axis, we
have ~1600 estimates in 500 episodes), but because
we use V,(S,), which is an estimate and therefore likely
wrong, TD targets are biased.

Gii1 = Rep1 +7Vi(Si41)

(4) Here you can see the TD target sequence
range of the TD targets is
much lower, MC alternates
exactly between 1 and

O, TD jumps between
approximately 0.7 and ~0.3,
depending on which “next
state” is sampled. But as
the V/(S,)is an estimate,
G,,.,isbiased, off target,
inaccurate.

Target value
°
IS

o
o

200 400 600 800 1000 1200 1400 1600 44—
Estimate sequence number

Is there anything in between?

What’s in the middle?
MC D
5‘!5
A, (1) Is there anything I
R 5. | in between? |
At+1 . J

n-step TD equations

as SHow ME THE MATH

N-step temporal-difference equations

[’St,At,Rt+1,St+1, --->Rt-|-n,St-|-n ~ Tt:t+n
(1) Notice how in n-step TD we must wait n steps before we can update V(s).

(2) Now, ndoesn't have to be «like in MC, or 1 like in TD. Here you get to pick. In reality nwill be nor
less if your agent reaches a terminal state. So, it could be less than n, but never more.

Geiton = Reyp1 + ... + ’yn_lRt+n + " Vign—1(St4n)

1 (3) Here you see how the value
function estimate gets updated

approximately every n steps. n-step
pp y every p S

[I p Nl .
Viin(St) = Vien 1(Sy) + o | Gropon —Vian—1(5%)
V

(4) But after that, you can just n-step
plug-in that target as usual. | > target

TD lambda

—

(1) First
of all, what
a beautiful
algorithmic
approach
to unify
MC and TD!
See, if you
set lambda
to one, the
only active
weight will
be MC.

Rﬂ‘l’ 5t+1 C)

)\T-t-l
MC
co-step

(1-A) A7

n-step

(1-A) A

3-step

(T-A)A

2-step

1-A
D
1-step

bootstrapping bootstrapping bootstrapping bootstrapping bootstrapping

5,0

A @

t

At+1 .

Rt+2’ 5t+2 C)

A, @

t+2

Rt+5' 5t+5 C)

O

O

O

C

O

VN

ke

(2) While setting
lambda to zero
will only activate
TD and every
other weight be
zero.

L (3) And a value in-between will

give a weighted combination
of all n-step estimates.
Beautiful, right?!

TD lambda equations

2 SHow ME THE MATH
Forward-view TD(A)
(1) Sure, this is a loaded equation, but we will unpack it below. The

bottom line is that we are using all n-step returns until the final
step T, and weighting it with an exponentially decaying value.

&1 (2) The thing is, because
T—-t—1 Tis variable, we need to
Gf‘::r — (1 —)\) Z /\n_th:t+n o)\T_t_th:T weight the actual return
el ~————" withanormalizing value
~ s — ﬁnaﬁvfé%flltt*reld(T) so that all weights add up
Sum of weighted returns to 1.
from 1-step to T-1 steps ;_I_

(3) All this equation is saying is that
£ 1 we will calculate the one-step return
Gt:t+1 = Rt+1 + 'YV:‘,(St+1) and weight it with the following factor. 9 1 _)

1 (4) And also the two-step return and weight it with this factor. g

2
Gtt+2 = Rey1 + YRey2 + 7 Vig1(St42) (I—=X2)A
I i (5) Then the same for the three-step return, and this factor. —g,

Gi4+3 = Rep1 + YRiyo + V2 Reys + v Viypo(Sia3) (1—A)\?

#‘ (6) You do this for all n-steps... | 3
Gitn = Rip1 4+ o + 7" Regn + 7" Vitn-1(Sen) (1= X)A"!

;| (7) Until your agent reaches a terminal state. Then you weight by this normalizing factor.
T-1 | l —i—
Gy = Riy1 +YRgp2 + ...+~ Rr ATt

(&) Notice the issue with this approach is that you must sample
an entire trajectory before you can calculate these values. }

+
St7At7 Rt—|—17 St-|—17 ceey RT7 ST ~ T¢.T

(9) Here you have it, V will
become available at time T.

A—error
VT(St) = VT—l(St) + G?T —VT_l(St)
——
A-return
(10) Because of this.

Eligibility traces

(1) The states visited during the episode are: 1,2,1,0,3,3,3,0,5.
-

(2) Thevalues 1y | ! ! - Fo---- boooo.]]
are the | | | | | | | |
eligibility trace P. e
coefficient. ! i e ; | T Tt --- = === - bl ~
1 | | | ! T
I »
(3) The y axis LTt e—e 4
arethe states. o I : | —I ----- oo S e oo :
(4) The x axis - ~ o N
thetime steps. l ! ! | Tteep ey Teeyl
I 31 | | | - | ! - |
0 1 2 3 4 5 6 7 8
(5) For example, at time step 4, the highest credit is (6) At each time step, we look at the
given to state 3, a little less credit is given to state O, eligibility of all states and apply a value F

then state 1, and finally state 2. function update accordingly.

TD(lambda) algorithm

SHow ME THE MATH
Backward-view TD(A) — TD(A) with eligibility traces, “the” TD(A)

(1) Every new episode we set the eligibility vector to O. F— EO =0

(2) Then, we interact with the environment onecycle. —p §, A, R IS -
ty 41ty LUi41, Ot41 Ttt41
(5) When you encounter a state S, make it eligible for ’ ’ +1, i+ +

an update... Technically, you mcrement its eligibility by 1. —p Et(st) — Et(St) +1
(4) We then simply calculate the TD error just as we
have been doing so far. | +

84411 (St) = Reg1 + 7Vi(St41) —Vi(St)
(5) However, unlike before, we update the b =

estimated state-value function V, that t;l;gDe ¢

is, the entire function at once, every time

step! Notice 'm not using a V,(5,), but a |_| Vit1 = Vt T Oy 6t t+1(St)lE
V.instead. Because we are multiplying by
the eligibility vector, all eligible states will
get the corresponding credit.

TD
error

(©) Finally, we decay the eligibility. Et+1 = Et"}/)\

Allows us to accurately evaluate
policies.

Having accurate estimates makes
policy improvement trivial.

There are two core methods, Monte-
Carlo prediction and Temporal-
Difference Learning.

One uses the actual returns and .
approximates the expectation by taking
means. The other bootstraps on its own
value estimates; uses partial or
predicted returns.

There are pros and cons in both!

Recommended reading.
Reinforcement Learning: An introduction (chapters 5, 6, 7, and 12)
http://incompleteideas.net/book/the-book-2nd.html

TaLry IT Up

Running estimates that n-step TD and TD(A) produce in the RW environment

>

14 o n-step TD estimates through time vs. true values
(SN
(1) I think the most os N(‘&, i T o)
N " it g N
interesting part of the s .:# U e e e)
o g L L :
differences and similarities 50 B wn(3)
b Tl
of MC, TD, n-step TD and 2o [B
Z P Y A S PSS SR wn(2)
TD(lambda) can be visualized 8 A
i . q . 02__T Y . _ —~ (1)
side-by-side. For this, | highly N‘W\”MW""“’W
recommend you head to the ‘
. o 100 200 300
book repository and checkout Episodes
the correeponding Notebook TD(A) estimates through time vs. true values
for this chapter. You'l find AV WA an)
much more than what I've B [T 3 @
8 lig . “Viea*™ - R |
shownyouin the text. p—— %, fi
s ¢
(2) But for now | can highlight 3 r: =
that n-step TD curves are a i T vn(2)
bit more like MC: noisy and Foa bl wn(1)
i
centered, while TD(lambda) is I;W
a bit more like TD: smooth and ol o B
Episod
off-target. B
(5) When we look at the |Og‘ a0 n-step TD estimaters‘through tlmé vs. true values (log scale)
scale plots, we can see how L W pJE VWM, —_vn(5)
P . i 08 i W\, in Y,
the high variance estimates |—l |§ /i N Vs R
of n-step TD [at least higherb—"5¢s '/ '/ P -
T . i
than TD(lambda) in this = Bk
ROy e
experiment], and how the ¥ T ey ==
running estimates move above | “°? Va(t)
and below the true values, 00
though they are centered. 100 . o
(4) TD(Iambda) values are not TD(A) estimates through time vs. true values (log scale)
centered, but are also much |—I M
el - VN AN viI(5)
smoother than MC. These two OBI 7 7 " =
-\ N an 5
are interesting properties. Go & = i M gy —v(4)
0.6 - . £
compare them with the rest % _—— i n(3)
) E /
of the methods you've learned Ho Y, =)
about so farl g |-
Vo2 . vn(l)
e e =
10°

http://incompleteideas.net/book/the-book-2nd.html

When it is obvious that the goals cannot be ,,
reached, don't adjust the goals, adjust the
action steps.

— Confucius
Chinese teacher, editor, politician, and philosopher
of the Spring and Autumn period of Chinese history

eorgia
Tooh

CREATING THE NEXT

» Optimize policies.

* Find the best policies for any
given environment.

* Needs accurate policy
evaluation methods and

exploration.

* This is the full reinforcement
learning problem. Note: Not
Deep Reinforcement Learning,
which we'll discuss in next

lecture.

We need to estimate
action-value functions

(1) Two actions, left and right,

0 0.25 05 1 0
and the v -function as shown.
T Can you tell me the best policy?
&l

(2) What if i told you left send you right with 70% chance?
(5) What do you think the best policy is now?
(4) See?! V-Function is not enough.

We need to explore

0 +| (1) Imagine you start with the
following deterministic policy.

T

(2) How can you tell whether the right action is better
than the left if all you estimate is the left action?
(3) See?l Your agent needs to explore.

What estimation method to use?

Other important concepts worth repeating are the different ways value functions can be

estimated. In general, all methods that learn value functions progressively move estimates a
fraction of the error towards the targets. The general equation that most learning methods

follow is: estimate = estimate + step * error. The error is simply the difference between a

sampled target and the current estimate: (target - estimate). The two main and opposite ways

for calculating these targets are Monte-Carlo and Temporal-Difference learning.

(1) Monte-Carlo target is the actual return. bﬁ

Aty Ar
i R 2 Rev2 . Ry

Sy St Sti2 St St

The Monte-Carlo target consists of the actual return. Really, nothing else. Monte-Carlo
estimation consists of adjusting the estimates of the value functions using the empirical
(observed) mean return in place of the expected (as if you could average infinite samples)
return.

Ar1
(1) TD target is the estimated return. Re
Sti2 St Sr
At |Reez
At)
Rt+1
51; 6t+']
. Ar1 P
B Stz St1 Sr
[X X J
At+1

The Temporal-Difference target consists of an estimated return. Remember
“bootstrapping”? It basically means using the estimated expected return from later states,
for estimating the expected return from the current state. TD does that. Learning a guess
from a guess. The TD target is formed by using a single reward and the estimated expected
return from the next state using the running value function estimates.

Monte-Carlo Control

Monte-Carlo Control

(3) MC Control estimates a Q-function, has
a truncated MC prediction phase followed
by an e-greedy policy improvement step.

TD Control: Sarsa

| (4) Sarsa has pretty much the same
as MC control except a truncated
TD prediction for policy evaluation.

Planning methods, RL methods

Policy iteration

—1 (1) Policy iteration consist of a full
convergence of iterative policy evaluation
alternating with greedy policy improvement.

Monte-Carlo Control

(3) MC Control estimates a Q-function, has
atruncated MC prediction phase followed
by an e-greedy policy improvement step.

Value iteration

(2) Value iteration starts with an
arbitrary value function and has a
truncated policy evaluation step.

Sarsa

L (4) Sarsa has pretty much the same
as MC control except a truncated
TD prediction for policy evaluation.

Q-Learning: off-policy learning

8¢~ SHow ME THE MATH
Sarsa vs. Q-learning update equations

(1) The only difference between Sarsa and Q-learning is the action used in the target.
(2) This is Sarsa update equation. Sarsa

T » Q(St, Ar) + Q(St, Ar) + oy rﬁt+1 + YQ(St41, At+12—Q(St,At)‘]
(3) It uses the action actually taken in tsaﬁ%a% T

the next state to calculate the target. |
(4) This one is Q-learning’s.

» Q(St, A¢) + Q(S, Ar) + oy

(5) Q-learning uses the action with the)
. , , Q-learning

maximum estimated value in the next target T

state, despite the action actually taken. |

Q-learning

kt+1 + v méxx Q(5t+1, G) —Q(St, Ati]

N >

hd

On-policy vs. Off-policy learning

R L WitH AN RL Accent
On-policy vs. Off-policy learning

On-policy learning: Refers to methods that attempt to evaluate or improve the policy used
to make decisions. It is straightforward; think about a single policy. This policy generates
behavior. Your agent evaluates that behavior and select areas of improvement based

on those estimates. Your agent learns to assess and improve the same policy it uses for
generating the data.

Off-policy learning: Refers to methods that attempt to evaluate or improve a policy
different from the one used to generate the data. This one is more complex. Think about
two policies. One produces the data, the experiences, the behavior, but your agent uses that
data to evaluate, improve, and overall learn about a different policy, a different behavior.
Your agent learns to assess and improve a policy different than the one used for generating
the data.

* GLIE:

 All state-action pairs must be explored infinitely
often.

» The policy must converge on a greedy policy.

« What this means in practice is that an e-
greedy exploration strategy, for instance,
must slowly decay epsilon'towards zero. If it

goes down'too guickly, the first condition may

not be met, if it decays too slowly, well, it
takes longer to converge.

 Notice that for off-policy RL algorithms, such
as Q-learning, the only requirement of these
two that holds is the first one. The second

one is no longer a requirement because in off-

policy learning, the policy learned about is
different thanthe policy we are sampling
actions from. Q-learning, for instance, only
re(%u,lr,es all state-action pairs to be updated
sufficiently, and that is covered by the first
condition above.

There is another set of requirements for general
convergence based on Stochastic Approximation
Theory that applies to all these methods. Because
we are learning from samples, and samples have
some variance, the estimates won’t converge unless
we also push the learning rate, alpha, towards zero:
« The sum of learning rates must be infinite.
« The sum of squares of learning rates must be
finite.

That means you must pick a learning rate that
decays but never reaches zero. For instance, if you
use 1/t or 1/e, the learning rate is initially large
enough to ensure the algorithm doesn’t follow only a
single sample too tightly but becomes small enough
to ensure it finds the signal behind the noise.

Recap: Control problem

* It's what we are looking, how to

find optimal contro

* There is a profounc
between policy eva

policies.

synergy
uation and

policy improvement.

* The control problem consists on
estimation action-value functions,
and correctly balancing
exploration and exploitation.

Recommended reading.

Reinforcement Learning: An introduction (chapters 5, 6)
http://incompleteideas.net/book/the-book-2nd.html

TaLry It Up

Similar trends among bootstrapping and on-policy methods

(1) This first one is First-
Visit Monte-Carlo control.
See how the estimates
have high variance, just as
in the prediction algorithm.
Also, all these algorithms
are using the same action
selection strategy. The only
difference is the method
used in the policy-evaluation
phasel Cool, right!?

(2) Sarsa is an on-policy
bootstrapping method,

MC is on-policy, but not
bootstrapping. In these
experiments, you can see
how Sarsa has less variance
than MC, yet it takes pretty
much the same amount of o s00 1000 1500 2000 2500 3000
time to get to the optimal Coma—

values. 10
(3) Q-learning is an off-
policy bootstrapping
method. See how much
faster the estimates
track the true values.
But, also, notice how the
estimates are often higher
and jump around somewhat 0 500 D ER . ED 2500 3000
aggressively.

(4) Double Q-learning, on
the other hand, is slightly 08 [
slower than Q-learning to
get the estimates to track
the optimal state-value
function, but it does soina
much more stable manner.
There is still some over-
estimation, but controlled.

FVMC estimates through time vs. true values

&0

v¥(2)

v¥(1)

State-value function

0 500 1000 1500 2000 2500 3000
Episodes

Sarsa estimates through time vs. true values

4

v¥(2)

°
o

v+(1)

State-value function
°
b4

°

Q-Learning estimates through time vs. true values
I R v
=4t

v¥(2)

ool Ao v()

State-value function

°
B
hee
3
<
=
=

State-value function

1000 1500 2000 2500 3000
Episodes

— v(5)

V(3)
-=- v(2)
— V(1)

— v5)
—- V()

vI3)
--- V2)
— Vi)

V(s)
—= V(4)
V(3)
- V(2)
— V(1)

— V(5)
—= Vi4)

v(3)
- V(2)
— V1)

http://incompleteideas.net/book/the-book-2nd.html

Georgia &

Tech|f Thank you!

CREATING THE NEXT

(iiiiiiza

