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» Syllabus has been updated
 Only 3 homework assignments (no enough time for more).

« Only 1 attendance sheet—the remaining points for class participations will be

coming from Piazza contributions. Hint: ask questions related to the lectures.
Participate!

* New website (I have write access to it and will be posting lecture
material): https://mimoralea.github.io/cs4641B-summer2020/.

« Office hours to be announced.

« Remaining lectures are focused on Reinforcement Learning and Deep
Reinforcement Learning. | hope you enjoy the material.



https://mimoralea.github.io/cs4641B-summer2020/

Outline

Introduction to Reinforcement Learning

‘ ‘ | visualize a time when we will be to robots what ,,
dogs are to humans, and 'm rooting for the
machines.

— Claude Shannon
Father of the Information Age Georgia !L
and contributor to the field of Artificial Intelligence Tech
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The big picture, you are here

(1) These types of

Machine Learning tasks
are allimportant, and they
are not mutually exclusive.

Machine Learning

(2) Infact, the best
examples of Artificial
Intelligence combine many
different techniques. |




Supervised learning (SL) is the task of learning from labeled data. In SL, a human decides which data
to collect and how to label it. The goal in SL is to generalize. A classic example of SL is a handwritten-
digit recognition application; a human gathers images with handwritten digits, labels those images, and
trains a model to recognize and classify digits in images correctly. The trained model is expected to
generalize and correctly classify handwritten digits in new images.

Unsupervised learning (UL) is the task of learning from unlabeled data. Even though data no longer
needs labeling, the methods used by the computer to gather data still need to be designed by a human.
The goal in UL is to compress. A classic example of UL is a customer segmentation application; a
human collects customer data and trains a model to group customers into clusters. These clusters
compress the information uncovering underlying relationships in customers.

Reinforcement learning (RL) is the task of learning through trial and error. In this type of task, no
human labels data, and no human collects or explicitly designs the collection of data. The goal in RL is
to act. A classic example of RL is a Pong-playing agent; the agent repeatedly interacts with a Pong
emulator and learns by taking actions and observing its effects. The trained agent is expected to act in
such a way that it successfully plays Pong.



The reinforcement learning cycle

(1) The cycle begins with

the agent observing the

environment. | v
Observation
and Reward

Transition

Environment

(4) Finally, the
environment transitions

Improve
Action J_

and its internal state
[likely] changes as a L |
(3) £ then sends an (2) The agent uses this

consequence of the ,
PI"@ViOUS state and the action to the environment observation and reward to
attempt to improve at the task.

agent’s action. Then, in an attempt to control
the cycle repeats. it in a favorable way.



Reinforcement Learning agents learn from feedback that is
sequential, evaluative, and sampled

versus

https://www.nature.com/articles/nature14540

supervised


https://www.nature.com/articles/nature14540

The action taken by the agent may have delayed consequences.
The reward may be sparse and only manifest after several time
steps. Thus the agent must be able to learn from sequential
feedback.

Sequential feedback gives rise to a problem referred to as the
temporal credit assignment problem.

The temporal credit assignment problem is the challenge of
determining which state and/or action is responsible for a reward.
When there is a temporal component to a problem, and actions
have delayed consequences, it becomes challenging to assign
credit for rewards.



The difficulty of the temporal credit assignment problem

(1) You are in state O.

Agent /—\Envi ronment

Time m (2) OK. I'll take action A. >

- (3) Yougot +23.

(4) You are instate 3.

(5) Nicel Action A again, please.

(6) No problem, -100.
(7)You are instate 3.

(&) Ouch! Get me out of herel
(9) Action B?!

(10) Sure, -100.

(11) Youare iW

(12) Was it taking action A in state O to be blamed for the - 1007
Sure, choosing action A in state O gave me a good immediate reward,
but maybe that is what sent me to state 3, which is terrible.

Should I have chosen action B in state 02

Oh, man... Temporal credit assignment is hard...

>

¢



Reinforcement Learning agents learn from
evaluative feedback

« The reward received by the agent may be weak, in the sense that it
may provide no supervision.

« The reward may indicate goodness and not correctness, meaning it
may contain no information about other potential rewards.

« Evaluative feedback gives rise to the need for exploration.

* The agent must be able to balance exploration, which is the gathering
of information, with the exploitation of current information.

» This is also referred to as the exploration vs. exploitation tradeoff.



The difficulty of the exploration vs. exploitation tradeoff

(1) You are in state O.

Agent /’\Environment

(2) OK. Il take action A. >
(3) You got +50.
(4) You are in state O.

(&) I've received lots of rewards.

(9) Now, let me try action B! ,

(10) Sure, +1,000.

(’] 1) You are in state O.

(12) Well, action A doesn't seem

that rewarding after all... | regret
choosing action A all this timel

Time

(5) Sweet! Action A again, please. ,

(©) No problem, +20.
(7) You are in state O.




Reinforcement Learning agents learn from
sampled feedback

« The reward received by the agent is merely a sample, and the
agent does not have access to the transition or reward function.

» Also, the state and action spaces are commonly large, even
infinite, so trying to learn from sparse and weak feedback
becomes a harder challenge when using samples.

« The agent must be able to learn from sampled feedback, it must
be able to generalize.

Georgia “
Te%h Q
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The difficulty of learning from sampled feedback

(1) You are in state (0.1,1.3,-1.2,7.9).

Agent / Environment
(2) What? What is that?

Time (3) OK. Il take action A. ,
(4) You got +11.

5)Youarein(1.5,1.3,-4.4,5.1).

(6) No idea. Action B?
(7) You got +11.

>

(9) Stillno clue...
(10) Action A2l | guess!? ,
(11)Yougot +1.

12)Youarein(1.2,1.1,1.4,1.4).

(13) I'have no idea what's going on.
I need function approximation... Ferhaps,
| can get a fancy deep neural network!




Recap: Introduction to Reinforcement Learning

(1) The cycle begins with

the agent observing the

environment. Vv
Observation
and Reward

Improve

7
|

and its internal state
[likely] changes as a L .
(3) It then sends an (2) The agent uses this

Transition

(4) Finally, the
environment transitions

Action

consequence of the :

previous state and the action to the environment observatuorl' and reward to

agent’s action. Then, in an attempt to control attempt to improve at the task. versus
the cycle repeats. it in a favorable way.

supervised

Recommended reading.
Reinforcement Learning: An introduction (chapters 1 and 16)
http://incompleteideas.net/book/the-book-2nd.html



http://incompleteideas.net/book/the-book-2nd.html
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(44 Mankind's history has been a struggle against a hostile 9%
environment. We finally have reached a point where we can begin
to dominate our environment [...]. As soon as we understand
this fact, our mathematical interests necessarily shift in many
areas from descriptive analysis to control theory.

— Richard Bellman
American applied mathematician

an |[EEE medal of honor recipient Georgia &
Tech
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The reinforcement learning interaction cycle, again

(1) Agent perceives the environment.

Agent (2) Agent takes an action.
>
Observation, Action 44—
Reward
Environment
>
L
(4) The environment reacts with

new observation, and a reward.

(3) The environment goes through internal state
change as a consequence of the agent’'s action. |




* Problem: you are training your dog to sit. Agent: the part of your brain that makes decisions.
Environment: your dog, the treats, your dog’s paws, the loud neighbor, etc. Actions: Talk to your dog.
Wait for dog'’s reaction. Move your hand. Show treat. Give treat. Pet. Observations: Your dog is paying
attention to you. Your dog is getting tired. Your dog is going away. Your dog sat on command.

* Problem: your dog wants the treats you have. Agent: the part of your dog’s brain that makes decisions.
Environment: you, the treats, your dog’s paws, the loud neighbor, etc. Actions: Stare at owner. Bark.
Jump at owner. Try to steal the treat. Run. Sit. Observations: Owner keeps talking loud at me. Owner is
showing the treat. Owner is hiding the treat. Owner gave me the treat.

* Problem: a trading agent investing in the stock market. Agent: the executing DRL code in memory and in
the CPU. Environment: your Internet connection, the machine the code is running on, the stock prices, the
geopolitical uncertainty, other investors, day-traders, etc. Actions: Sell n stocks of y company. Buy n
stocks of y company. Hold. Observations: Market is going up. Market is going down. There are economic
tensions between two powerful nations. There is danger of war in the continent. A global pandemic is
wreaking havoc in the entire world.

* Problem: you are driving your car. Agent: the part of your brain that makes decisions. Environment: the
make and model of your car, other cars, other drivers, the weather, the roads, the tires, etc. Actions: Steer
by x, Accelerate by y. Break by z. Turn the headlights on. Defog windows. Play music. Observations: You
are approaching your destination. There is a traffic jam on Main Street. The car next to you is driving
recklessly. It's starting to rain. There is a police officer driving in front of you.



The agent: the decision-maker

(1) All agents evaluate
their behavior.

(2) Reinforcement learning
means, well, agents have
to learn something.

(3) One of the '|'
coolest things |
of reinforcement
learning is

agents interact
with the problem. |

—) Interact

Observation Action



For now, the only important thing for you to know about agents is that there are
agents and that they are the decision-makers in the RL picture.
They have internal components and processes of their own, and that is what makes
each of them unique and good at solving specific problems.
More importantly, they are general, for the most part. They can solve a variety of
problems if the problems provide the same interface (hint: Markov Decision Process).
If we were to zoom into agents, we would notice that most agents have a three-step
process:

« All agents have an interaction component, a way to gather data for learning.

« All agents evaluate their current behavior.

» All agents improve something in their inner components that allows them to

improve their overall performance (or at least attempt to improve).



The environment: Everything else

(1) Environment
receives the
action selected by
the agent.

(5) Finally, the —1

reaction is passed Observation
back to be agent.
Reward

Environment

Transition
(4) The new state and

reward are passed
through a filter: some
problems don't let
the true state of
the er.ﬂwronment be Reward
perceived by the agent!

I —
(3) ...the environment (2) ..and depending on the
will transition to a new | current environment state, F—
internal state. and the agent’s chosen action... b—

Action

Next
state

<




Most real-world decision-making problems can be expressed as RL
environments. A common way to represent decision-making
processes in RL is by modeling the problem using a mathematical
framework known as Markov Decision Processes (MDPs.)

In RL, we assume all environments have an MDP working under the
hood. Whether an ATARI game, the stock market, a self-driving car,
your significant other, you name it, every problem has an MDP
running under the hood (at least in the RL world, whether right or
wrong.)



Markov Decision Process

¢ SHow ME THE MATH
MDPs vs. POMDPs

_|__’ MDP(SJ “47 T7 Ra 899 7 %)

(1) MDPs have state space S, action space A, transition function T, reward signal R.
It also has a set of initial states distribution S, the discount factor y, and the horizon H.

— POMDP(S, A, T, R. 8.7, .0, €)

(2) To define a POMDF you just add the observation space O and an emission probability
Ethat defines the probability of showing an observation o, given a state s.. Very simple.



The environment is represented by a set of variables related to the problem. The combination of all the
possible values this set of variables can take is referred to as the state space. A state is a specific set of
values the variables of the state space take at any given time.

Agents may or may not have access to the actual environment’s state; however, one way or another,
agents can observe something from the environment. The set of variables the agent perceives at any given
time is called an observation.

The combination of all possible values these variables can take is the observation space. Know that
“state” and “observation” are terms used interchangeably in the RL community. This is because, very often,
agents can see the internal state of the environment, but this is not always the case.

At every state, the environment makes available a set of actions the agent can choose from. Often the set
of actions is the same for all states, but this is not required. The set of all actions in all states is referred to
as the action space.

The agent attempts to influence the environment through these actions. The environment may change
states as a response to the agent’s action. The function that is responsible for this transition is called the
transition function.

After a transition, the environment emits a new observation. The environment may also provide a reward
signal as a response. The function responsible for this mapping is called the reward function. The set of
transition and reward function is referred to as the model of the environment.



Markov property

2e.  SHow ME THE MATH

The Markov property

(1) The probability (3) Will be

of the next state. the same.
P(St+1|S¢, At) = P(St41|S¢, Aty St—1, A1, --)

4+ 4

(2) Given the J (4) Asif you give it
current state the entire history of
and current interactions. |

action. |






 Imagine a simple environment. Let’s call it the Bandit Walk.
* There are three states representing the cell ids.
» There are two actions, left, and right.

« The transition function is deterministic and as ¥1ou expect (E.g. left moves
the agent left, right moves it right). State 0 (H—hole) and sta t 2 (G—goal) are
terminal states.

« The reward function is a +1 when landing the goal state “G”, 0 otherwise.
* The agent starts in the middle cell, labeled S.

(1) The agent starts in the middle of the walk.

(2) The leftmost I
stateis a hole.
'|' . H 0 S 1 G 2 )
L4 A | J-
(3) The rightmost
state is the goal, and
provides a +1 reward.




Respective MDP graphical representation

(1) State 1 is a starting state. (3)State 2 is a
(&) State Ois a hole, (2) Reward goal terminal ?rtate.

a bad terminal state. : l signal. |

I L
0l @ I NP

©) Action O, '
(7) Transition ELe)ﬁ:” o (I? /:S;lon B
: ignt".
of »Ehi Igft — (4) The transition
action is of the right action

deterministic. p— , o
is deterministic.



| state | Action | Nextstate | Transiton probabilty | _Reward signal

Respective MDP table:

0 (Hole) 0 (Left) 0 (Hole)

0 (Hole) 1 (Right) 0 (Hole) 1.0 0
1 (Start) 0 (Left) 0 (Hole) 1.0 0
1 (Start) 1 (Right) 2 (Goal) 1.0 +1
2 (Goal) 0 (Left) 2 (Goal) 1.0 0
2 (Goal) 1 (Right) 2 (Goal) 1.0 0




OpenAl Gym: A Python package that provides a variety of
reinforcement learning environments

o . Sample . Sample Reward
Description Observation space . Action space . :
observation action function

Hotter Intrange 0-3. Float from The reward is
Colder: 0 means no guess yet -2000.0- the squared
Guess a submitted, 1 means 2000.0. percentage
randomly | guessislower than the 2 Thefloat | “909:37 of the way
selected target, 2 means guess etoa the agent
number is equal to the target number has guessed
ing hi i the agent is toward the
using hints. | and 3 means guess is -
higher than the target. guessing. target.
A 4-element vector
with ranges: from [-4.8,
e IS Int range 0-1. The reward
Cart Pole: Inf, 4.2, Inf]. is 1 for every
Balan.ce 3 | First element is the cart | [0-16,-1.61, 0 means push 0 . step t.aken,
poleina position, second is the 0.17, 2.44] cart left, 1 Incluc.ilng.the
cart. cart velocity, third is means push termination
pole angle in radians, cartright. step.
fourth is the pole
velocity at tip.
An 8-element vector
with ranges: from [-Inf, Reward for
-Inf, -Inf, -Inf, -Inf, -Inf, 0, landing is
0] to [Inf, Inf, Inf, Inf, Inf, 200. There
Inf, 1,11 Int 03 is reward
Lunar First element is the x ntrange s, for moving
Lander: position, the second | [0.36, 0.23, | No-op (do from the
Navigate a the y position, the -0.63,-0.10, | nothing), fire top tothe
lander to third is the x velocity, | -0.97,-1.73, | leftengine, 2 landing p?ad,
its landing the fourth is the y 1.0,0.0] fire main for crashing
pad. velocity, fifth is the engine, fire or coming to
vehicle’s angle, sixth is right engine. rest, for each
the angular velocity, leg touching
last two values are the grouqd,
booleans indicating and for firing
legs contact with the the engines.
ground.

Int range 0-5.
Action O is
No-op, 1is
Fire, 2 is up, The reward
Pong: [[[246, 217, 3isright, 4 isa 1 when
Bounce A tensor of shape 210, 64], [ 55, is left, 5 is the ball goes
the ball 160, 3. 184, 230], down. beyond the
past the [ 46,231, _ opponent,
opponent, | Valuesranging 0-255. | 179], ..., [28, Notice hf’W 3 anda-1
and avoid 104,249], | some actions when your
letting the Represent‘s agame [25,5,22], don’t affest agent’s
ball pass screen image. [1 73, 186, the game in padd|e
you. 111,..11 any way. In misses the
reality the ball.
paddle can
only move
up, down or
not move.
[-0.9,
-0.06,
0.6, 0.6,
A 44-element (or A 17-element 0.6,
more, depending on vector. -0.06, 'The reward
the implementation) [0.6,0.08 04 | iscalculated
Humanoid: vector e Values Y based on
- 09,0.,0,0, , -0.9,
Make robot ranging from forward
. 0.,0.,0.045, 0.5, .
run as fast Values ranging from 0. 047 -Inf to Inf. 02 motion
as possible -Inf to Inf. (l) 3'2 (')’ 0 '7' with a small
and not fall. S Represents v penalty to
Represents the 0.22,., 01 | the forces to 0.9, encourage a
positions and velocities apply to the 0.4, natural gait.
of the robot’s joints. robot’s joints. 0.8,
-0.1,
0.8,

-0.03]




OpenAl Gym: A Python package that provides a variety of
reinforcement learning environments

Box2D Classic control
Continuous control tasks in the Box2D simulator. Control theory problems from the classic RL literature.
N Episode 5 Episode 1
Episode 1 Episode 1 J' )‘
3
i Episode 1 CartPole-v1 MountainCar-vO
BipedalWalker-v2 BipedalWalkerHardcore-v2 Balance a pole on a cart. Drive up a big hill.
Train a bipedal robot to walk. Train a bipedal robot to walk
over rough terrain. Acrobot-v1
Swing up a two-link robot.
Episode 1 Episode 1 Episode 1 »
LunarLander-v2 LunarLanderContinuous-v2 MountainCarContinuous-v0 Episode 1
Navigate a lander to its Navigate a lander to its Drive up a big hill with
|anding pad |and]ng pad continuous control.

Pendulum-v0
Swing up a pendulum.



Recap: Markov Decision Process

2s  SHow MEe THE MATH
MDPs vs. POMDPs

l—’MDP(S,.A, T, R,S@,’Y,H)

(1) MDFPs have state space S, action space A, transition function T, reward signal R
It also has a set of initial states distribution S, the discount factor y, and the horizon H.

— POMDP(S, AT, R. 8.7, 1. 0.€)

(2) To define a POMDF you just add the observation space O and an emission probability
Ethat defines the probability of showing an observation o, given a state s.. Very simple.

Recommended reading.
Reinforcement Learning: An introduction (chapters 1 and 3)
http://incompleteideas.net/book/the-book-2nd.html



http://incompleteideas.net/book/the-book-2nd.html

einforcement Learning
rocess

6 & Inpreparing for battle | have always found that 9%
plans are useless, but planning is indispensable.

— Dwight D. Eisenhower
United States Army five-star general and
S4th President of the United States

CREATING THE NEXT



Let's obtain try to solve this decision-making problem

CoNcReTE EXAMPLE
The Slippery Walk Five (SWF) environment
The Slippery Walk Five (SWF) is a one-row grid-world environment (a walk), that is

stochastic, similar to the Frozen Lake, and it has only five non-terminal states (seven total if
we count the two terminal).

The slippery walk five environment

(1) This environment is stochastic
and even if the agent selects the right

action, there is a chance it goes left! | 1
/——\
0 1 2l¥_3 4 5 6
H +S | - G
“ 4 +1

‘ — (2) 50% action success.
(3) 32.35% Stays in place.

1 (4) 16.66% goes backwards.

The agent startsin S, His a hole, G is the goal and provides a +1 reward.



The return G

2e  SHow MEe THE MATH
The return G

(1) The return is the sum of rewards encounter from step t, until the final step T.

G = Rip1 + Reyo + Reg3 + ... + R 4

(2) As I mentioned in the previous chapter, we can combine the return and time using the
discount factor, gamma. This is then the discounted return, which prioritizes early rewards. |-‘

Gy = Rip1 +YRito +7°Riys + ... + 7' 'Ry

(3) We can simplify the equation and have a o .
more general equation, such as this one. | » Gt — E Y Rt—|—k—|—1

k=0
Gt — Rt_|_1 s '7Gt—|—1 4+— (4) And stare at this recursive definition of G for a while.




Calculating the return G

Go,=1%0+0.99 %0+ 0.9801 * 0 + 0.9702 % 0 + 0.9605 * 0 + 0.9509 % 1

has' ~ x 3 l_T

(©) This is the

discounted
- reward at
1 (5) and soon... time step T
(4) Discounted reward at t+3. (final step).

= (3) Reward at t+2, discounted by gamma raise to the power 1.
— (2) This is the reward obtained at time step t+7 (O) discounted by gamma (0.999).

— (1) Calculating the return at time step t=0




The state-value function V

weighted sum... F—— that transition occurring.

SHow ME THE MATH

The state-value function V

(1) The value of a state s. (3) Is the expectation over Tt.
(5) Given you select
2) Under policy . UW( ) Er [Gt|St = 8] state sat time step 1.
policy PT
f

LI (4) Of returns at time step t.
(6) Remember that returns are the sum of discounted rewards.

’Uﬂ-(S) =E, [Rt+1 + YRy + 72Rt+3 =T |St = 8]

(7) And that we can defined L =
them recursively like so. —Tt Ur (S) = Er [Rt-l—l + ’7Gt+1 |St = 8]

I:(8) This equation is called the Bellman equation and it tells us how to find the value of states.

=" n(als) X p(s/, s, )lr + yug(s)], Vs € S
1‘_l 1

a
(9) We get the action (O'f('] 0) We also weight | (1) We add the rewrd and ,
actions,if the policyis  |the sum over the the discounted value of the 1(;] 2) Do this
stochastic) prescribed  |probability of next landing state, then weight 'or all states
for state 5. And do a states and rewards. F that by the probability of :PZZ state




The action-value function Q

SHow ME THE MATH

The action-value function Q

(1) The value of action a (2) Is the expectation of returns given we select
in state s under policy . action ain state sand follow policy 7 thereafter. F—

! » Gr(s,a) =E;|Gt|S: = s, Ay = a]
(3) And just as before we can define this equation recursively like so.
L > g (s,a) = Er Ry +vGi11|S: = 5, A; = q

(4) The Bellman equation for action values is defined as follows.
¢ (5, a) Zps rls,a)[r +yv.(s")],Vs € S,Va € A(s)
—=

(5) Notice we dont we@h tl (©) We do weigh, LI (7) What do we weigh? L (&) We do
over actions because we however, by the The sum of the reward that for

are interested only in a probabilities of next and the discounted all state-
specific action. states and rewards. value of the next state.  action pairs.




The action-advantage function A

2e SHow ME THE MATH

The action-advantage function A

(1) The advantage i 1 (2) s the difference
of action ainstate — between the value of that
s under policy . 7T(87 CL) — qr (87 a') UW(S) action, and the value of the

il 4 state s, both under policy .




(1) Notice how
Q (s.a) allows
us to improve
policy T, by
showing the
highest valued
action under
the policy.

(2) Also
notice there is
no advantage
for taking the

same action |_I
as policy

recommends.

Examples of V, Q, and A

START
H ||| ]]| G |
3 6
0.0 0.002 0.011 0.036 0.11 0.332 0.0 iV (s)
3 6
0 (—
0.0 0.002 0.011 0.036 0.11 0.332 0.0
| S, a
1 1 1 1 1 — ¢ Q,(s a)
0.0 0.006 0.022 0.069 0.209 0.629 0.0
3 6
0 +—
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 A (s, a
1 1 1 _’ ‘ "( 14 )
0.0 0.004 0.011 0.033 0.099 0.297 0.0
3 6




The Bellman optimality equations

22~ SHow MEe THE MATH
The Bellman optimality equations

(1) The optimal (2)Is the state-value
state-value function. H» Ux (5) — MaX VUr (S) , Vs € S function with the highest
i - | value across all policies.

(s,a) = maxqr(s,a),Vs € S,Va € A(s)
U

(3) Likewise, the optimal action-
value function is the action-value 4
function with the highest values. |

(4) The optimal state-value VU (3) — Inax Z p(S', T‘S, a) [7“ + YU« (3,)]
function can be obtained this way. F—=2 J s'r

(5) We take the max action. ————  (6) Of the weighted sum of the reward and
discounted optimal value of the next state.

(7) Similarly, the
optimal action-value qx (S, a) = E p(S,, 7"|8, Cl) [7” + Y mE}X Q*(*S,v a,)]
a

function can be

/
obtained this way. I—j ST T

(&) Notice how the max is now on the inside. |




Policy evaluation equation

SHow ME THE MATH

The policy-evaluation equation

(1) The policy evaluation algorithm consist on the iterative approximation of the state-value
function of the policy under evaluation. The algorithm converges as k approaches infinity. j

(2) Initialize v (s) for all s in S arbitrarily, and to Oif sis terminal. Then, increase
k and iteratively improve the estimates simply by following the equation below.

T—» Vg+1(S ZW als) ZP 3 , 7|8, a) [T+7@k( )}

(2) Calculate the value of a state s as the weighted sum of the T

reward and the discounted estimated value of the next state 5. |




Initial calculations of policy evaluation

) = Sl T e+ e

1 © >
1) We have a deterministic j
(1) et ‘ (2) Let's use gamma of 1.

policy, so this part hereis 1.

(3) An“Always START

LEFT” policy. ——— T H |« < < 4 4
Py 0 1 2 3 4 5 Ge

State 5, Iteration 1 (initialized to 0 in iteration 0):

=

v111(5)= p(s’=4|s=5,a=LEFT)*[R(5 LEFT,4)+v (4)] +

o

p(s'=5|s=5,a=LEFT)*[R(5 LEFT,5)+v (5)] +
p(s’=6|s=5,a=LEFT)*[R(5, LEFT, 6)+Vv (6)]

=~

o

v711(5):0.50*(0+0) + 0.33*(0+0) + 0.166 * (1+0) = 0.166 ¢— (4) Yep, thisisthe

value of state 5 after
T iteration of policy

, T
evaluation (v1 (5)).



Policy evaluation detailed results

k| ve L v v ] ve) | vie v Ve
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0.1667 0
2 0 0 0 0 0.0278 0.2222 0
3 0 0 0 0.0046 0.0463 0.2546 0
< 0 0 0.0008 0.0093 0.0602 0.2747 0
5 0 0.0001 0.0018 0.0135 0.0705 0.2883 0
6 0 0.0003 0.0029 0.0171 0.0783 0.2980 0
7 0 0.0006 0.0040 0.0202 0.0843 0.3052 0
8 0 0.0009 0.0050 0.0228 0.0891 0.3106 0
9 0 0.0011 0.0059 0.0249 0.0929 0.3147 0
10 0 0.0014 0.0067 0.0267 0.0959 0.318 0
104 0 0.0027 0.011 0.0357 0.1099 0.3324 0




Quick detour: The Frozen Lake environment

(1) Agent
starts each

trial here.
T

v

(4) But, these are
holes that, if the
agent falls into, will
end the episode

right away. |

START
0 1 2 3
4 9 6 7
8 9 10 11
I
I
GOAL 1
I
12 13 14 15 I

1 (2) Note that the
slippery, frozen
surface may send
the agent to
unintended places.

(3) Agent gets a +1
when it arrives here.

T




Policy evaluation in the FL environment

l

2

6

11

12

13

.
l

14

15

GOAL

0.04 0.01| 0.06 | 0.01
0.33 G 011 | 0.44 G 0.18 052 G 0.24 | 0.56

k=1 k=2 k=3 [c=4

(1) Values start propagating with every iteration. I—A'A
0.01

0.01 0.01 0.02 0.01 0.02 0.01
0.02 | 0.09 | 0.02 0.04| 0.11 | 0.03 0.05 | 013 | 0.04 0.06 | 0.14 0.05
029 | 060 | G 032 | 063 | G 035 | 065 | G 0.37 | 0.66

k=5 k=6 k=7 k=

(2) The values continue to propagate and become more and more accurate. |




Policy Improvement equation

2e.  SHow ME THE MATH

The policy-improvement equation

(1) To improve a policy, we use a state-value function and an MDF to get a one-step lookahead
and determine which of the actions lead to the highest value. This is policy improvement equation.

(2) We obtain a new policy T’ by (3) How, do we get the highest-
taking the highest-valued action. |1 valued action?

m'(s) = argmax ’Zp(s’, rls, a) [r + ’yvﬂ(s’)] =

V'

S .T
(4) By calculating, for each action, the wei’ghted sum

of allrewards and values of all possible next states. |

(5) Notice that this is simply using the action with the highest-valued Q-function.



Policy Improvement example

(1) This is the (2) Action-value function
“Careful” policy. of the “‘Careful” policy. (3) The greedy policy over
| v the ‘Careful” Q-function. I—l
L START [ (38 0.35 0.34
0.39 -
0.41 0.40| 026024 028027023023
START 0.40 0.25 0.28 0.23 START
A\ T T 0.27 0.12 ol B o e A
0.42 0.28 0.260.26
+ 1 0.29 0.14 + +
0.45 0.29 0.2
T+ € 0.29 0.30 [ 0.340.34 | 0.430.27 T ]3| ¢
0.31 0.48 0.39
-5 | G —> ¢ G
0.39 0.67
0.350.59 | 0.57 0.71 | GOAL
0.43 0.76 7N
(4) I'm calling this

new policy “Careful+” |




Policy Iteration

Adversarial policy 'j

0.00% success

0.00% success

0.00% success

13.60% success

sf + 1t 1 %0.00| 0.00| 0.00| 0.00
Policy
+ 00+ O _evaluation | 0.00 1 ooo| []
I 14
||« 0.00 | 000 0.00| []
[ |4¢|¢c []|oo00|o000| &
Policy improvement T
v
54— +— | | — svoo 0.00| 0.04 | 0.02
Policy
« |« _evaluation | 0.00 L oor| [
| |« |[] 0.00 | 000 019| []
IR [ 1]ooo|os0| 6
Policy improvement T
v
“l ot %0.00| 005 | 016 | 015
Policy
« U« _evaluation | 000 Lo | ]
F 14
! |« 0.00| 022|035 []
(14 || e [J]os3|oe7| 6
Policy improvement T
v
s¢ >4 %012 | 009 019 019
Policy
+ ||« || evaluation | o1s|[]|o20|[]
L 14
J|13 | |] 0419 | 0.38| 0.43| []
]| — || e [1|oss|or| &

Policy improve

ment

T

69.20% success

72.00% success

73.20% success

73.20% success

«~|t(=>1 052 038] 026|025
Policy
« |0« |0 _evaluation | 05 (] o2s|[]
T ¢ «|[] 057|062 0ss| [ ]
|| 4| e []|o72|08s| G
Policy improvement T
v
54— T+« 1 %0.53| 045 | 0.38 | 0.37
Policy
« U« _evaluation | 055 L] | os2| []
+ 13 |« O 0.58| 063 0.60 | []
I []|o7s]|0ss| &
Policy improvement T
2
54— +1 4 “0.54| 050 | 0.47 | 0.4
Policy
L « | _evaluation | 056 (]| oss|[]
T « | [] 059|064 o62|[ ]
] o []|o7a|oss| G

Policy improvement

i

n

L~

Y —

O[] 1]t

|« e |||

“[+]1]-

Optimal Eolicz|




Value Iteration Motivation

START

H | ¢ < < < < G

0 1 2 3 4 5 6

(1) Calculating the Q-function
after each state sweep. ———

1st Iteration

START
(2) Seehow —p H |oo ooJoo oofoo o0foo o0f017 056f G |
even after 0 ! 2 3 4 3 6
the first 2nd Iteration
iteration the

' START

greedy policy H [oo oofoo ooJoo oofoo oo1fots 0ss] @G
over the 0 1 2 3 4 5 6
Q-function
was already hi .
2 different 104th lteration

START
3”4 better H (oo oofoo 00|00t 001f0.03 0.04f024 063 (G | 4
policy! 0 1 2 3 4 5 6

(3) The fully-converged state-value
function for the "Always LEFT” policy. F——




Value Iteration

2e~  SHow MEe THE MATH
The value-iteration equation

(1) We can merge a truncated policy evaluation step
and a policy improvement into the same equation. — (4) Of the reward

' d the discounted
2) We calculate (8) Using the i)
‘(chi value ofueach sum of the estimated value of the
action. | ' ,[ &1 weighted sum... — = next state.
/ /
vEp11(8) = max E p(s',rls,a) {r + yug (s )}
a
/

s ,r
(7) Then, we take ’ 1 | (5) Multiply by the

18 W over*.the t (©) And add for all probability of each
values ot actions, transitions inthe action.  possible transition.




Value Iteration example

Truncated

policy
evaluation

Truncated

policy
evaluation

Truncated

policy
evaluation

Truncated

policy
evaluation

(1) This is the optimal action-value function and optimal policy

START
H | | “— | — G
1st Iteration
START
H |00 oojoo oofoo oofoo oofoi7 05| @G
START
H “— | — —|—| G
2nd Iteration
START
H |oo o0o0joo 00|00 o0fo0s 025l0.33 067 @G
START
H “— | — — | —| G
3rd Iteration
START
H |00 oo0]oo o00]0.04 013f020 0.42]051 076| G
START
H —|— ||| G
4th Iteration
START
H |00 00]o02 006fo11 025033 0.54f0.63 0.82] G
122nd Iteration
START
H — | — — || G
0.37 0.67]0.79 0.89]0.93 0.96]0.98 0.99]0.99 1.00

Policy
improvement

Policy
improvement

Policy
improvement

—



Recap: Planning methods

evaluation

m
s V

improvement

Recommended reading.
Reinforcement Learning: An introduction (chapter 4)
http://incompleteideas.net/book/the-book-2nd.html



http://incompleteideas.net/book/the-book-2nd.html
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