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Lecture 09. Clustering analysis

and K-means
Xin Chen

These slides are based on slides from Mahdi Roozbahani



Logistics

* Project proposal
— Background & motivation
* Why do people care?
* More importantly, what is the existing approaches? How do you understand them?

— Obijectives:
* Something based on the background information, what is missing? What is more
important? What is your new angle?
e Writing a report/proposal

— For any figures, plots and sentences that is not “yours”, you need to clearly
cite where and who it come from.

— Do not look like this. (If you submit it to somewhere like a conference, this
would be a serious issue)

* There is a dataset: A.
* There is a paper/link B, which is about the topic.

* The figure says C.
— Everything on the report is your understanding. (How is this material you cite

related to yours?)
* In general, remember to start from “small” and “solid”.
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Clustering images
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Goal of clustering:
Divide objects into groups and objects within a group
are more similar than those outside the group.




Clustering other objects
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Linguistic Similarity
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Clustering is subjective

What is considered similar/dissimilar?

Clustering is subjective

Simpson's Family ~ School Employees



What is clustering in general?

* First we need to pick similarity/dissimilarity function?

* The algorithm figures out the grouping of objects based on
the chosen dissimilarity/dissimilarity function:

— Points within a cluster is similar
— Points across cluster are not similar

e |ssues for clustering:
— How to represent objects? (vector space? Normalization)

— What is similarity/dissimilarity function?
— What are the algorithm steps?
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Properties of similarity function

* Desired properties of dissimilarity function
— Symmetry: d(x,y) = d(y, x)

* Otherwise you can claim “Alex looks like Bob, but Bob
looks nothing like Alex.

— Positive separability:
d(x,y) = 0,ifand onlyifx =y

e Otherwise there are objects that are different, but you
cannot tell apart

— Triangular inequality: d(x,y) < d(x,z) + d(z,y)

* Otherwise you can claim “Alex is very like Bob, and Alex
is very like Carl, but Bob is very unlike Carl.



Distance functions for vectors

» Suppose two data points, both in R
—x = (xq, %3, e, xg)7
-y =0nY2 V)

* Euclidian distance: d(x,y) = \/Z?zl(xi — ¥;)?

* Minkowski distance: d(x,y) = 2/2?:1(?51' — V)P
— Manhattan distance: p = 1,d(x,y) = ?zl |x; — vl
— “inf”-distance: p = oo,d(x,y) = max(|x; — y;|)



Example

>

» Euclidian distance: V4% + 32 =5

¢ Manhattan distance: 4 +3 =7

» “inf’-distance: max{4,3} = 4



Some problems with Euclidean
distance




 Manhattan distance is also called Hamming

Hamming Distance

distance when all features are binary

— Count the number of difference between two binary
vectors

— Example,x, y € {0, 1}7
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Edit distance

* Transform one of the objects into the other, and
measure how much effort it takes
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d: deletion (cost 5) d(x,y) =5%1+1%3+2%1=10

s: substitution (cost 1)
i: insertion (cost 2)
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Results of K-means clustering

Image Clusters on intensity Clusters on color

Clustering using intensity only and color only



* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



K-Means algorithm
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Visualizing K-Means Clustering



http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html
http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

K-means algorithm

» Initialize k cluster centers, {c!, c?, ..., c¥}, randomly
¢ Do

« Decide the cluster memberships of each data point, x¢, by
assigning it to the nearest cluster center (cluster assignment)

(i) = argminjzl,._uk ||xi - Cj||2

¢ Adjust the cluster centers (center adjustment)

) 1 )
=7, ).

i:m(i)=j

» While any cluster center has been changed



K-Means step 1
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K-Means step 2




K-Means step 3
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K-Means step 4
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K-Means step 5
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Questions

* Will different initialization lead to different results?
— Yes
— No
— Sometimes

* Will the algorithm always stop after some iterations?
— Yes
— No (We have to set a maximum number of iterations)
— Sometime

Yes. Does it always converge to a optimum?

=> No, it is likely to converge to a local optimum.



Formal statement of the clustering
problem

Given n data points, {x!,x2,...,x™} € R
Find k cluster centers, {c!,c?, ...,c*} € R?

And assign each data point i to one cluster, w(i) €
1, ..k}

Such that the averaged square distances from each
data point to its respective cluster center is small

n

1 . .
min—Z ||xl — c”(l)||2
n

=1



Clustering is NP-Hard

* Find k cluster centers, {c},c?, ..., c*} € R? and assign each
data point to one cluster, r(i) € {1, ..., k}, minimize

1 . .
min—z ||x‘ = C’T(l)||2
n "
i=1
* A search problem over the space of discrete assignments
— For all n data points together, there are k™ possibility

— The cluster assignment determines cluster centers.
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An example

* For all n data points together, there are k™
possibilities, where k is the number of

clusters.

* An example:
— X={A, B, C}, n=3 (data points) k = 2 clusters



Convergence of K-Means

* Will K-Means objective oscillate?
n

1 . .
min—z ||x‘ — C’T(l)||2

n M
=1

 The minimum value of the objective is finite.

* Each iteration of K-means algorithm decrease the objective.

— Both cluster assignment step and center adjustment step
decrease objective argminjzlp__,kﬂx‘ —c/ | |? for each data
point i



Time Complexity

® Assume computing distance between two
instances is O(d) where d is the dimensionality of
the vectors.

® Reassigning clusters for all datapoints:

»O(kn) distance computations (when there is one
feature)

» O(knd) (when there is d features)

® Computing centroids: Each instance vector gets
added once to some centroid (Finding centroid
for each feature): O(nd).

® Assume these two steps are each done once for |
iterations: O(lknd).

Slide credit: Ray Mooney.



How to choose K?

Best Number of Clusters
at the “Elbow”
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Number of Clusters

L.e., Distortion

Objective Function Value

Distortion score: computing the sum of squared
distances from each point to its assigned center.



