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Classification

* Represent the data
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* Alabelis provided for each data point, y € {—1, +1}

e (Classifier:
>®—»j —— h(®) € {-1,1}

h(x) = sign(x@) — linear classification (Perceptron)
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Decision making: dividing the feature
space

* Distribution of sample from normal (positive class) and
abnormal (negative class) issues.




How to determine the decision
boundary?

 Given class conditional distribution: P(x|y = 1), P(x|y = —1) and

class prior:P(y = —1),P(y = 1)




Bayes Decision Rule

likelihood Prior

~N  /

_ Pxly)PG) _ P(xY)

P(yl|x) = =
Y \ PG 2.P(xY)
posterior normalization constant
* Prior: P(y)
* Class conditional distribution: P(x|y) = N (x|u,, X y)
N(x|uy»2 y)

* Posterior: P(y|X) — Y o)V (x|uy,Y ¥)



Bayes Decision Rule

Learning: (1) Prior: P(y)(2)Condition distribution: P(x|y)

The poster probability of a test point g;(x) := P(y = i|x) =
P(x|y)P(y)
P(x)

Bayes decision rule:
— Ifq;(x) > q;(x), theny =i, otherwise y = j

Alternatively
: _ P(x|ly=1) _ Py=J)
— Ifratiol(x) = Ply=p) > P

— Or look at the log-likelihood ratio h(x) = —In(x)

theny =i, otherwisey =j

qi(x)
qj(x)




What do people do in practice

* Generative model
— Model prior and likelihood explicitly

— “Generative” means able to generate synthetic data
points

— Examples: Naive Bayes, Hidden Markov models

* Discriminative models
— Directly estimate the posterior probabilities
— No need to model underlying prior distributions
— Examples: Logistic regression, SVM, Neural network



Generative Model: Naive Bayes

Use Bayes decision rule for classification

Assume p(x|y = 1) is fully factorized: dimensions are
independent.

Or the variables corresponding to each dimension of
the data are independent given the label

P(x|y)P(y)

PO = =5

d
Pixly =1 = | [pCaly = 1)
i=1
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Naive Bayes assumption:

P, Vigper ) = P(x1|Viaper=1) P (x3 |3’label ) . PCn|Yiaper=1) P Wigper ) =

P(Yiavei=1) 1_[ P(xi|Yiaper=1)
i=1
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Discriminative models

* Directly estimate decision boundary: the
posterior distribution p(y|x) or h(x) =
. ln X Qi(x)

( )Qj(x)
— Logistic regression, Neural networks
— Do not estimate p(x|y) and p(y)

 Why discriminative classifier?
— Avoid difficult density estimation problem
— Empirically achieve better classification results
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Gaussian Naive Bayes

P(y = 1|@ = P(x|y=1)p(y=1)= mfl)P(x|_y=1

P(X) P(y=1)P(x|y=DFP(y=-1P(x|y=-1)

_ 1
Hlromreish =S
P(x;|ly)~ N(uki@ Class independent variance
d d
Pexly) = [ [pGaty) = [ [ exp(— 53 G — )
i=1 i=1 V2o 20;

= — o ——

Prior: P(y = 1) = m4
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P(y =1[x) =

1
1+ exp[ln(s)]

1

2 2 1 — 174
UgT— U1 Uqj Upj +in
1 + exp| 1( xX; + )

&2_,_, 20, _n
— R

P(y = 1[x) =
Upi—Uqi
Let: w; = ;'2 , W
l —
Py=1x) = 5

+ exp(wo + Xz WiX;)
T EAP W T Lij=1 7
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Logistic function for posterior
probability

Let’s use the foIIowmg function:

1
= = where s = d ———
/9(s)
This is also called sigmoid function o
A
It’s easier to use this function for
optimization N |
-6 -4 -2 UO 2 4 6

Logistic regression assumption: the form
of P(y = 0lx,0) = 1+exp(— Y 6x;)
\




- >®~T — )

Xa

h(x) = sign(x6) — linear classification (Perceptron)

=@

Xa

X0

h(x) — linear regression

>0

h(x) = u(x8) — logistic regression

Hard classification

Soft classification
Posterior probability
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An example

* An example of predicting heart attacks

* |nputs: cholesterol level, age, weight, foot size, etc.
— g(s) is the probability of heart attack within a certain time
— s = x0, is called risk score.

ho () = p(y1x) = {1 ’ (;2’5); ~)

Using posterior probability directly



( 1

1+ exp(—x8)’
exp(—x6)

|1+ exp(—x6)’

ho(x) = p(ylx) =<

We need to find parameters 0, let’s set up log-likelihood
for n data points:

[(0) = lognp(yilxi, 0) 1(6) = log 1_[ g(x)Yi(1 — g(x;) @D
i=1 i=1

16) = ) [0 (3 — 1) — log(1 + exp(~0)]
i=1
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Calculate gradient of [(0)

n

1(6) = ) 167" (yi = 1) ~ log(1 + exp(~x0)]

i=1

 Maximum conditional likelihood on data by
calculate its gradient

al(9) Z - - exp(—x;0)
e i T(y. — 1 |
00 0= D +x 1 + exp(—x;0)

]

Logistic regression only models P(y|x), so we om, ignoring P(x)




The objective function

Find @ such that the conditional likelihood of the labels
is maximized.
1 2
l(§91+362)

3 /(0)

max [(8) = log[[{1 p(¥i|x:, 6) 1(6,)

1 2
51(91)+§l(9?)

- - [(QL
6, 0, G
Good news: [(8) is concave function of 8, and there is a
single global optimum.

Bad news: no closed form solution (resort to numerical
method)
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Gradient descent

One way to solve an unconstrained optimization
problem is gradient descent.

Given an initial guess, we iteratively refine the
guess by taking the direction of the negative
gradient.

Think about going down a hill by taking the
steepest direction at each step.

Update rule:
— @k+j = by VI (x)

— v, Is called the step size or learning rate.



Gradient descent algorithm

* Initialize parameter 6,

* Do
exp(—x;0
ot+l — gt 4 T(v. —1) + xT
- @g;:) "1y + exp(—x;0

L

* While the [[6%1 — 6Y]| > €
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Logistic regression

e’ 1 0.5 L/-——/"’_
g(s) = —— = —= wheres = x0 7

e Assume a threshold
— Predicty =1if g(s) > 0.5
— Predicty = 0if g(s) < 0.5
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Multiclass Logistic regression

Disease diagnosis: healthy / cold / flu / pneumonia
Object classification: desk / chair / monitor / bookcase
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One-vs-All (One-vs-Rest)

Multi-class classification:

hP(x) = p(y = 1|x,0) (i = 1,2,3)

hg (x)
Ty
A
A hg (x)
A
s




One-vs-All (One-vs-Rest)

Train a logistic regression hg)(x) for each class i
—

To predict the label of a new input x, pick class i that maximizes:

max hg) (x)
l

——



One-vs.-One

- = -
In total it hombinations

K@

. L . () . .
Train logistic regression he (x), - 7binary classifiers

To predict the label of a new input x, pick class i that maximizes: max hg) (x)

Vote with a combined classifier
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Generative and discriminative
classifier

* Generative classifiers
— Modeling the joint distribution P(x, y) :NJ l)y;tr

— Usually via P(x,y) = P(y)P(x|y)
— Example: Gaussian naive Bayes

* Discriminative classifiers
— Modeling P(y|x) or simply f:x =y

— Do not care about P(x)
— Examples: logistic regression, support vector machine



Gaussian Naive Bayes vs Logistic
regression

* How can we compare Gaussian naive Bayes
with a logistic regression?

—P(x,y) = P(y)P(x]y) vs. P(y|x)

1
Py =1|x) =
1+ exp(wy + X1ty Wix;)
where: w; = 274y o gy 1Ty g U
. L Giz ’ 0 T4 =1 Zaiz

P(x;|y)~ N(uki,@ Class independent variance




Gaussian Naive Bayes vs Logistic
regression

P(y|x) of GNB is a subset of P(y|x) of LR, with the
assumption that GNB has independent variance.

Given infinite training data:
— We claim: LR >= GNB

For a general Gaussian Naive Bayes, none of them
can encompass the other



Take-Home Messages

Generative and Discriminative Classification
The Logistic Regression Model
Understanding the Objective Function
Gradient Descent for Parameter Learning
Multiclass Logistic Regression



