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Logistics

* Form your project team

* Schedule of assignments and project

— Every two weeks, there will be a new homework. In total,
we have 4.

— Project schedule:

Next Wednesday (Jun 3™) our lecture will be about the project
requirement.

This weekend, | will share some dataset that you may use for your
project. | will create a excel file that briefly introduces your project.

Form your team by the end of next week and | will assign you a
team randomly on Friday Jun 5.

Project proposal is due on Sun Jun 14th,
Project presentation is on Wed July 13,
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Regression

Image|[ v o O

OF

0 . 1

* Suppose we are given a training set of N observations

{(X1, X2y weey Xn), (yl’ V25 s yn)}
* Regression problem is to estimate y(x) from the dataset.



0 N
 Want to fit this data to a polynomial regression model:
y= 0y+0xt+...+0,x% €
e Letz ={1,x,x?,.x*Y € R%nd O = (65,0, ..., 0)T

-y = z0



Which one is better?

from Bishop
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Can we increase the maximal polynomial degree to a very large
dimension, as a “safe” solution?

— No, this can lead to overfitting !!!



The overfitting problem

—©— Training
—O— Test
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* The training error is very low, but the error on test set
is large.

* The model captures not only patterns but also noisy
nuisances in the training data.




The overfitting problem
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* |n regression, overfitting is often associated with large
weights (severe oscillation).

* How can we address overfitting?



Regularization (smart way to cure
overfitting disease)

without regularization with regularization

N
7

Put a break on fitting

* Fit alinear line on sinusoidal with just two points.



Who is the winner?

g(x) is the average over all lines

without regularization

sin(mx)

I

Bias=0.21; var=1.69

with regularization

Bias=0.23; var=0.33
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Regularized learning

Minimize E(Q) Why this term leads
to regularization of

parameters?

Cost function: squared loss

N
1 A
E(0) =% ) {f(x;,0)) + 070
i=1

\ J
\ Y J Y

Loss function Regularization



Regularization is just constraining the
weights(6)

 Want to fit this data to a polynomial regression model:
y=0y+0xt+...+0,x% €
e Letz ={1,x,x2%,.x2Y € R%nd 0 = (6,,0,, ..., 05)T

—  Minimize E(6) = ~ (26 — y)7(Z6 — y)

Subject to 89 < C

—

* For simplicity: let’s call 8;;,, as weights’ solution for non-
constrained one and 6 for the constraint model.



Consider an example

Let d=2: y = 00 + 91Z1 + HZZZ

An example: E(8) = ([5 + 10x] — y)?

3D view Top view
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Gradient 876
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* Imagine you standing at a point (8,,8,),7 (87 9) tells you which
direction you should go to increase the value of 878 most rapidly.

V(870) is a vector, any line passing
through the center of the circle.



Graph of 676
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Minimize E(6) = ~ (26 — y)7 (26 — y)
Subjectto 6t < C

(6)
VE: the gradient (rate) in
objective function that
minimizes the error
(orthogonal to ellipse)
V(QtQYE(H)

Applying a constraint 6%6,
where the best solution
happens?

On the boundary of the circle, as it
is the closest one to the minimum
absolute
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Do the integration

Minimize E(6) + 676

The final solution is 0, after
applying the regularization.
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Ridge Regression

* Cost function-square loss

N
1 A
EO) =+ ) (f(x,0) =y + 2116112
i=1

\ J
\ Y J Y

Loss function Regularization

e Regression function for x (1d)

Yy = 60 + 91Z1 + ..+ HdZd-I- €



Solving for the weights 6

Write the target and the regressed values as vectors

[y1 ) [ z(x1)0 ) (1 oz(a) . za(x) | 6 )
y = y.Q F z(xz)(? — 0 — 1 21 (x3) Zq(x3) 9.1
\ o \ 2(x,)0 ) 1 oae) . wG |\ 6

An example, with polynomial regression with basic functions up to x?
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N

- 1 A

EO) =7 Y (F(1,6) =y + 511611
i=1

1 A
EB) =—(y—26)*+—|8]||?
0) = & = 20)*+ 1161
Let’s compute derivative w.r.t. 8 is zero for minimum.

E@) T
— =7 —z0) + A6
o (y )

(ZTZ + A6 = ZTy

0=0CZTZ+2)"1ZTy



0=ZTZ+A)1ZTy

Y Y

DX1 DXD DXN N X1

If 2 =0 (no regularization), then 8 = (Z72)"1Zy
IfA=00,0 =%ZTy—> 0

Adding the term Al improves the conditioning of the
inverse, since if Z is not full rank, then ZTZ + AI will be (for

sufficiently large A).



Ridge Regression Example

The red curve is the true function s

(which is not polynomial).
The data points are samples from the
curve with added noise in y.

There is a choice in both the degree (D) -
of the basis functions used and in the
strength of the regularization.

-1.5

O Sample points
Ideal fit

N

- 1 A

EO) = v ) (f (0, 0) =y + 116112
i=1

6 is a D+1 dimensional vector
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N=9 samples, D=7
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N=9 samples, D=3

least-squares fit
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Ideal fit
Least-squares solution

N=9 samples, D=5

least-squares fit
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25




Outline

Overfitting and regularized learning
Ridge regression

|asso regression <
Determining regularization length




Regularized Regression

* Minimize with respect to

E(0) =~ %I, 1(f (x;,0) — ;) + AR(6)
\_Y_/ \ Y J

Loss function Regularization

* There is a choice of both loss functions and regularization.
* We have seen “ridge” regression:

— Squared loss: Y1 {f (x;,0) — y;}?
— Squared regularizer:1||0]|?



The Lasso regularization (norm one)

* LASSO = Least Absolute Shrinkage and Selection

Minimize with respect to

E() = ~ ¥, I(f (x:,0) — y;) + AR(6)

1
E(0) =~ (v = 26)2+A116l;

P-Norm definition: [|6]], = (X%, |61P)"""



Look at an example of two parameters
with Lasso

{Minimize E(0) = %(ZH —1(Z6 —y)

Subjectto 8 < C
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How to make use of data for learning?

All data points

A
| \

option 1: [N How to do the “test”?

Train (100%)

Train (75%) Test (25%)

Can we have a better way?
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Leave-One-Out Cross Validation
Foreveryi=1,...,n:

» train the model on every point except ¢,

» compute the test error on the held out point.
n

1 ~(—i
Average the test errors. CV(n) — - Z(yi — yf ))2
=1
123 n
123 n
123 n

123 n

123 n



K-Fold Cross Validation

Split the data into k& subsets or folds.
Forevery i =1,...,k:
» train the model on every fold except the ¢th fold,

» compute the test error on the 7th fold.

Average the test errors.

123 n
11765 47
11765 47
11765 47
11765 47

11765 47



error norm

Choosing A Using Validation Dataset
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Pick up the lambda with the lowest mean value of
RMSE calculated by Cross Validation approach
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Take-Home Messages

What is overfitting

What is regularization

How does Ridge regression work

Sparsity properties of Lasso regression

How to choose the regularization coefficient A



