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[Logistics

® Create your team as soon as possible.
® Textbook and reading materials

® Homework 1 will come out by the end of this
week.

® Attendance sheet will be posted.
® We start our office hour this week.



Recap
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Uncertainty and Information

Information is processed data
whereas knowledge is information that is modeled to be useful.

You need information to be able to get knowledge

e information #= knowledge
Concerned with abstract possibilities, not their meaning



Uncertainty and Information

25% | Rainy

50%| Rainy

75% | Sunny
50%| Sunny

Which day is more uncertain?

How do we quantify uncertainty?

High entropy correlates to high information or the more

uncertailn .



Physics and chemistry




Design English Dictionary

® Each word is used in people’s lives with various
frequencies
»Frequent: a, an, the
»Infrequent: adomania, opia

® The question is how to encode these words.

® The goal is to minimize the size of the
information.

»|ntuitively, you don’t want to say a long sentence for:
“how are you?”, “this is an apple.”



An example with Probability

\_ ! Y,

Assume that the particles are can
move to anywhere in the container.



An example with Probability
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An example with Probability
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MOTIVATION: COMPRESSION

» Suppose we observe a sequence of events:

» Coin tosses

» Words in a language
» notes in a song

= e,

» We want to record the sequence of events in the smallest
possible space.

» In other words we want the shortest representation which
preserves all information.

» Another way to think about this: How much information
does the sequence of events actually contain?



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
A O |
Approach 1:
H| T
0 |00
00, 00, 00, 00,0

We used 9 characters



MOTIVATION: COMPRESSION

To be concrete, consider the problem of recording coin tosses in

unary.
K R
Approach 2:
H|T
00 |0
0,0,0,0,00

We used 6 characters



MOTIVATION: COMPRESSION

» Frequently occuring events should have short encodings

» We see this in english with words such as “a”, “the”,
“and”, etc.

» We want to maximise the information-per-character
» seeing common events provides little information

» seeing uncommon events provides a lot of information



Application examples

Physics/chemis

try behaviors

Design English An example of Compression
Dictionary probability example

o

Entropy is a direct measure of disorder.




Information Theory

® Information theory is a
mathematical framework which
addresses questions like:

»How much information does a random
variable carry about?

»How efficient is a hypothetical code,
given the statistics of the random
variable?

»How much better or worse would
another code do?

>|s the information carried by different
random variables complementary or
redundant?
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Claude Shannon
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Entropy

o Entropy H(Y) of a random variable Y

K

HY) = - = Klog,@(y = k)

—_—

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y (under most efficient code)

¢ Information theory:

Most efficient code assigns —log,P(Y = k) bits to encode the message
Y = k, So, expected number of bits to code one random Y is:
\

K
# Y Py = k) log, Py = k)
k=1

_f"/-



Entropy(S)

S is a sample of coin flips

p. is the proportion of heads in §

p_ is the proportion of tailsin S
Entropy measure the uncertainty of S

H(S) = @logz@ — p)logy )

1



Entropy Computation: An Example

H(S) = —p4 logy pt — p—logy p—

- . ’F
( head P(h)=0/6=0 P(t)=6/6=1

Q" P Entropy:-OIogO-1Iog1=—0—0®

—

o

(<)}

head 1 P(h) =1/6 P(t) = 5/6

tail 5 Entropy = - (1/6) log, (1/6)— (5/6) log, (1/6)'= 0.65
head 2 P(h) =2/6—_ P(t) = 4/6
tail 4 Entropy = - (2/6) log, (2/6) - (4/6) log, (4/6) = 0.92
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Information

Let X be a random variable with distribution p(x)

[(X) = log2(p 5

Have you heard a picture is worth 1000 words?

)

Information obtained by random word from a 100,000 word vocabulary:

1 1
I(word) = log | ——) =1 — 16.61 bit
(word) Og<p(x)> °g<1/100000> o

A 1000 word document from same source:

I(document) = 1000 X I(word)

A 640*480 pixel, 16-greyscale video picture (each pixel has 16 bits information):

1
[(Picture) = log <1/16640*480> =\2288()0

A picture is worth (a lot more than) 1000 words!
3




Understand entropy with the example
Physics/chemis Design English An example of Compression
. { A system J

((g)
- { A system J ‘ (( )) ‘ Consumers




Understand entropy with the example

Physics/chemis

try behaviors
A system
— An example of

probability

Compression
example

Design English
Dictionary (((( ))))
— A system ‘ é ‘ Consumers




The Probability Example

Low entropy B

A
- (@ @] )

. . I P(A)=4 P(B)=0 Entropy =-0-0=0
. H J

J

. . ‘ P(A)=3 P(B) =1
@

i s : )
Hig@w . . E ‘ . P(A)=2 P(B)=2  Entropy = -%log G) — %log G) =1
: V.
4 . E

Entropy = -ilog G) — %log G) =0.81

\.

P(A) =1 P(B)=3 Entropy = -% log G) — %log G) =0.81

P(A)=4 P(B)=0 Entropy =0

oo o
e o0
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Low entropy




Physics and chemistry

Entropy(solid water) < Entropy ( liquid water)

Entropy(compressed air) < Entropy (air outside)



Definition of entropy 1n

Compression

\
H(Y) = @Z P(y = k) lggz P(y = k)
k=1

B L -
=\ P=3 P~ 1024

log2 = 1 meaning 1 bit log4 = 2 meaning 2 bits log 1024 = 10 meaning 10 bits

e




Understand entropy with the example

Entropy is a direct measurement of disorder.

Physics/chemis
try behaviors
A system

An example of

probability
Design English (((( ))))
Dictionar

' ‘ ‘ Consumers

Compression
example

Entropy is an average number of bits needed encodes an variable..

— A system

[ More disordered means needing more bits for the encoding

Less disordered means needing less bits for the encoding

—

2
9



How to explain?

Water in solid Water in liquid Water in vapor
Low entropy Medium entropy High entropy



An example with Probability

1 1 1 1
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Properties of Entropy

1 |

H{P} = Y- log —

2.Pylos
. Non-negative: H(P) >0
. Invariant wrt permutation of its inputs:
H(p1,p2;---»Pk) = H(Pr(1),Pr(2)+ - > Pr(k))
. For any other probability distribution {q1,q2,...,qr}:
! |

1
H(P) = ) pj-log— < ) p;-log—
;— zz-:- @

. H(P) <logk, with equality iff p; =1/k Vi

. The further P is from uniform, the lower the entropy.
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Joint Entropy

~ [Jow|o01 (04 |01 06| "~ &1
3 huMidity |"high |02 |0.1 |0.1 |04

e H(T) = H(0.3,0.5,0.2) = 1.48548
e H(M) = H(0.6,0.4) = 0.970951
H(T) + H(M) = 2.456431

e Joint Entropy: consider the space of (¢, m) events H(T, M) =
>t.m P(T =t,M =m) - log P(T:t}M:m)
H(0.1,0.4,0.1,0.2,0.1,0.1) = 2.32193

o=

Notice that H(T, M) < H(T) + H(M) !
—_—




P(T = t|M = m)

Conditional Entropy

cold | mild | hot P XY
low | 1/6 |4/6 |1/6 ] 1.0
high [2/4 |1/4 |1/4| 1.0 > Ly N

Conditional Entropy:
o H(T|M = low) = H(ll6,4/6, 1/6) = 1.25163
o H(T|M = high) = H(2/4,1/4, 1//4) = 1.5

e Average Conditional Entropy (aka equivocation):
=Y P(IM=m) -HT|M =m) =
0.6 - H(T|M = low) 4+ 0.4 - H(T|M = high) = 1.350978



Conditional Entropy

P(M =m|T =t)

cold | mild | hot
low |1/3 |4/5 | 1/2
high|2/3 |1/5 |1/2
1B | L | 1D

Conditional Entropy:
o H(M|T = cold) = H(1/3,2/3) = 0.918296
¢ H(M|T = mild) = H(4/5,1/5) = 0.721928
e H(M|T = hot) = H(1/2,1/2) = 1.0
e Average Conditional Entropy (aka Equivocation):

H(M/T) =3P(T=t)- HM|T =t) =
0.3 - H(M|T = cold) + 0.5 - H(M|T = mild) + 0.2 - H(M|T =
hot) = 0.8364528




Conditional Entropy

» Conditional entropy H(Y|X) of a random variable Y given X;

Discrete random variables: P(xi)
H(Y|X;) HY|X = x;) = E p(x;,y;)log
A _ p(x;, ;)
- ‘ XEX,YEY
NV ——

K
continwous:  H (Y| X;) = —f Z P(y = k|x;)log, P(y = k) p(xi)db
=1 e N

e

¢ Quantify the uncerntainty in Y after seeing feature X;

o H(Y) is the expected number of bits needed to encode a
randomly drawn value of Y

e given X;, and
» average over the likelihood of seeing particular value of x;

3
7



Mutual Information

¢ Mutual information: gquantify the reduction in uncerntainty in
Y after seeing feature X;

I(X;,Y) = HY)- H(Y|X;)

-—

¢ The more the reduction in entropy, the more informative a
feature.

¢ Mutual information is symmetric
o I(X;,Y)=1(Y,X;) = HXX;) — HX;|Y)

N — K . by = p(xi,y=Kk) _
b I(Yl Xl'.) - fzk p(xl’y - k) lOgZ p(xl)p(y=k) L

PSS
o = [ZEpCuly = p(y = k) log, L =K) gy,

\



Properties of Mutual Information

I(X;Y) = H(X) - (X/

1
= Y P(x)-log — > P(z.y)- IogP
e y)..o}?w'ﬁkw

., , P(x)
_ P(z,y)

Properties of Average Mutual Information:

e Symmetric (but H(X) # H(Y) and H(X/Y) # H(Y/X))
e Non-negative (but H(X) — H(X/y) may be negative!)
e Zero iff X,Y independent



CE and MI: Visual Illustration

H(X,Y)

4

Image Credit: Christopher Olah. 0
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An example t
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This determines _ 4
how we encode ~ 16




Cross Entropy

Cross Entropy: The expected number of bits when a wrong distribution-Q is assumed
while the data actually follows a distribution P

= -3 plo)rals)

reX

This is because:

1
H(p,q) =E,[l;] = E, |log q(%)}

H(p,q) = Zp ﬁ—lgqi;)

H) = — Zp(w log q()

4
3




Kul lback—-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

KLIP(S)Q(S)] = P(s)log 28
— 1
Cross Entropy = Eﬂ@py @m_ ; P(S) log Q(S)J —H[P}

cross entropy -
1vergence

Excess cost in bits paid by encoding according to ) instead of P. is a distance
"‘ measurement

KL[P|Q] = 3" P(s) log Qg

> P(s)log % <log ) P(S)P(S) by Jensen

=1ogZQ(s) =logl1 =0

So KL[P||Q] > 0. Equality iff P = Q . When P =Q, KL[P||Q] =0

4






Entropy and KLL Divergence in

Machine learning

® Construct a model with high entropy or low
entropy?

® How a modle is related to cross entropy and
KL Divergence?



Take—Home Messages

® Entropy
»A measure for disorder
»Why it is defined in this way (optimal coding)
>|ts properties

® Joint Entropy, Conditional Entropy, Mutual
Information
»The physical intuitions behind their definitions
»The relationships between them

® Cross Entropy, KL Divergence
»The physical intuitions behind them

»The relationships between entropy, cross-entropy, and
KL divergence



SN



[Lagrange Multipliers

® Min/Max a function f(x,y, z), where x, y, z are
subject to the constraint g(x, y, z)=c

® Lagrange Multipliers
>Define F(x,y,2z,4) = f(x,y,2) + Ag(x,y, 2)
»Take partial derivative with regarding to each parameter

»Solve all the associated equations as the potential
min/max value.

® Example

»Max f(x,y) = x? y,stx+y =1
2 2
»Max f(x,y,z) = 8xyz, s. t + + =1




S,



