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Probability

o Asample space Sis the set of all possible outcomes of a
conceptual or physical, repeatable experiment. (S can be finite
or infinite.)

¢ E.g., Smay be the set of all possible outcomes of a dice roll: S
(1 2 3 4 5 6)

¢ E.g., Smay be the set of all possible nucleotides of a DNA site: S

A4 ¢C G T) f

¢ E.g., S may be the set of all possible time-space positions of an
aircraft on a radar screen.

o An Event A is any subset of S

¢ Seeing "1" or "6" in a dice roll; observing a "G" at a site; UAOO7 in
space-time interval



Three Key Ingredients in Probability Theory

A sample space is a collection of all possible outcomes

Random variables X represents outcomes in sample space

Probability of a random variable to happen (4 (X) =D (X - X)

p(x) =0



Continuous variable

Continuous probability distribution
Probability density function
Density or likelihood value
Temperature (real number)
Gaussian Distribution

p(x)dx =1

R

Discrete variable
Discrete probability distribution

Probability mass function
Probability value Z p(x) =

Coin flip (integer) Yed
Bernoulli distribution



Continuous Probability Functions

» Examples:
¢ Uniform Density Function:

fx(x)={bia foranSb

0 otherwise

¢ Exponential Density Function:

1 X
fx(x)=;e Z forx =0

—X
E(x)=1—e# forx >0

¢ Gaussian(Normal) Density Function

fi) = e 2
X) = e 2o
§ V2rmo




Discrete Probability Functions

» Examples:
¢ Bernoulli Distribution:

1—-p forx=0
“lp forx=1

In Bernoulli, just a single trial is conducted

¢ Binomial Distribution: k is number of successes
« P(X = k)=()p*(1 —p)"*

n—k is number of failures

(7) The total number of ways of selection k distinct combinations of n
trials, irrespective of order.
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Example

X and Y are random variables
N = total number of trials

n;; = Number of occurrence

X = Throw a . .
dice Y = Flip a coin
X
Cj
X1 =1 Xi=2=2 X=3=3 Xj=4=4 Xi=5=5 Xi=¢=06
Yj=p = tail |y =3 |m; =4 n; = 2 n;=5|n;=1|n;=>5 20

Yj=1 = head ng=2 ;=2 |\nj=4n; =2 n; =4 ;=1 15




Xizg =1 Xi=2=2 X—3=3 Xj=4 =4 Xi=5= 5 Xi—¢=©6 Cj

yj:2 = tall Tlij = Tlij =4 Tlij =2 Tlij = Tlij = Tlij = 20
Yj:1 — head n;; = ng; = 2 ng; = 4 ng; = ng; = n;; = 15
C; |5 6 6 7 5 6 N=35

p(x =1,y = tail) =
p(y = taillx =1) =
p(y = head) =




Probability: p(X =x) =%
_ N0
Joint probability: pX=x,Y =yj) =
o oge n;;
Conditional probability: p(Y = yj|X =x;) =
l
Sum rule L
p(X = x;) =ZP(X=xi;Y=3’j) = p(X) =ZP(X,Y)
j=1 Y
Product rule
n.. n.. C.
p(X=x ¥ =y) = =" =p(Y =ylX = x)p(X =x)

pX,Y) =p(Y|X)p(X)



Conditional Independence

» Examples:

P(Virus | Drink Beer) = P(Virus)
iff Virus is independent of Drink Beer

P(Flu | Virus;DrinkBeer) = P(Flu|Virus)
iff Fluis independent of Drink Beer, given Virus

P(Headache | Flu;Virus;DrinkBeer) =
P(Headache|Flu;DrinkBeer)
iff Headache is independent of Virus, given Flu and Drink Beer

Assume the above independence, we obtain:
P(Headache;Flu;Virus;DrinkBeer)
=P(Headache | Flu;Virus;DrinkBeer) P(Flu | Virus;DrinkBeer)
P(Virus | Drink Beer) P(DrinkBeer)
=P(Headache |Flu;DrinkBeer) P(Flu |Virus) P(Virus) P(DrinkBeer)
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Bayes” Rule

» P(X|Y)=Fraction of the worlds in which X is true given that Y is
also true.

» For example:
¢ H=“Having a headache”
¢ F="Coming down with flu”
e P(Headche|Flu) = fraction of flu-inflicted worlds in which you
have a headache. How to calculate?

o Definition:
P(X,Y) P(YIX)P(X)

P(Y)  P(Y)
P(X,Y) = P(Y|X)P(X)

P(X|Y) =

Corollary:

This is called Bayes Rule



Bayes’ Rule

» P(Headache|Flu) = P(Heﬁﬁf:fm)
_ P(Flu|Headache)p(Headache)
B P(Flu)

Other cases:

= P(XIY)P()
o P(Y|X) = P(X|Y)P()+P(X|1Y)P(-Y)
= — P(X]Y)P)
* P(Y =2ilX) = 55— %7 = 30299
P(X Y;Z P(Y,Z)
. P(Y|x,2) =X IP(X’)Z) _
P(X|YJ Z)P(Y,Z)

P(X|Y,Z)p(y.2)+P(X|Y,Z)P(~v,2)

2
0
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Mean and Variance

Expectation: The mean value, center of mass, first moment:
Ex|g(X)] =f g(x)px(x)dx = p

N-th moment: g(x) = x™
N-th central moment: g(x) = (x — )"

0.0}

Mean: Ex[X] = [__ xpx(x)dx

o ElaX]| = aE[X]

o E[a + X] = a + E[X]
Variance(Second central moment): Var(x) =
Ex[(X — Ex[X])?] = Ex[X*] — Ex[X]*

o Var(aX) = a?Var(X)

o Var(a+ X) =Var(X)



For Joint Distributions

» Expectation and Covariance:
o E[X +Y] = E[X] + E[Y]
o cov(X,Y) = E[(X — Ex[X])(Y — Ey(Y)] = E[XY] — E[X]E[Y]
o Var(X+Y) =Var(X) + 2cov(X,Y) + Var(Y)
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Gaussian Distribution
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, (x=w)*

o Gaussian Distribution: f(x|u,o°) = e 20°

2102
Probability density function
'I"I"l"I"I"I"I'I'T‘l'l'

H=0, 02=0.2, m=—
/\ H=0, 0?=1.0, s

[=0, 02=50, ==
[=-2, 02=0.5, =— -

L L I. L & J. L l L l J. L l l L J. L I.
-5 -4 -3 -2 -1 0 3 4 5
X

Probability versus likelihood



https://www.quora.com/What-is-the-difference-between-probability-and-likelihood-1

Multivariate Gaussian Distribution

WE) = —— = W) (k)
p (x|, _(Zﬂ)”/2|2|1/2eXp{ 5 (X —u x— ()}

» Moment Parameterization y = E(X)
2 =Cov(X)=E[X — )X —p)7]

» Mahalanobis Distance A?= (x— )" 1(x — p)

» Tons of applications (MoG, FA, PPCA, Kalman filter,...)



Properties of Gaussian Distribution

¢ The linear transform of a Gaussian r.v. is a Gaussian. Remember
that no matter how x is distributed

EAX+b)=AEX)+b
Cov(AX + b) = ACov(X)AT
this means that for Gaussian distributed quantities:
X~NWwX) » AX+b~N(Au+ b,ATA")

» The sum of two independent Gaussian r.v. is a Gaussian
Y=X1 +X2, X1J‘X2 _)ﬂy =ﬂ1 +[,t2,2y =Zl +22

» The multiplication of two Gaussian functions is another
Gaussian function (although no longer normalized)

N(a,A)N(b,B) x N(c,C),
whereC = (A1 +B 1) L,c=CA™'a+ CB~ b



Central Limit Theorem

Probability mass function of a biased dice
0.35 LLet” s say, I am going to

get a sample from this pmf
having a size of n =4

0.3

0.25

> S, ={1,1,1,6} = E(S;) = 2.25
0.15
0.1 I I S, ={1,1,3,6} = E(S,) = 2.75
0.05 .
1 | =
2 %( 4 5 Sm e {1,4‘,6,6} = E(Sm) S 425

According to CLT, it will follow a
bell curve distribution (normal
distribution)

1 2.9 3.9 4.5 6
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Maximum Likelihood Estimation

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

Main assumption:
Independent and identically distributed random variables
i.1.d



Maximum Likelihood Estimation

For Bernoulli (i.e. flip a coin):
Objective function: f(x;;p) = p¥i(1 — p)t= x; € {0,1} or {head, tail}
Lip) =pX =x1,X =25, X =x3, ..., X = x;,)

1.1.d assumption

=p(X =x)p(X = x2) .p(X = x3) = f(x;0)f (x2; D) .. f (% D)

L(p) = ﬁf(xi;p) = ﬁpXi(l — p)l*i
i=1 i=1

L(p) =p*1(1 —p)' ™ 1 x p*2(1 —p) ™2 . x p*™n(1 —p) ™ =

= pz xi(l — p)Z(l_xi)



We don” t like multiplication, let’ s convert it into
summation

What'’s the trick? Take the log

L(p) = p2*i(1 — p)2(t=x)
logL(p) = l(p) = log(p) z x; +log(1—p) Z(l — X;)
i=1 i=1

How to optimize p?

dl(p) — 0 i=1%i _ i=1(1 —x;) —0
op

p 1—-p



