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Some logistics

Please make your decision ASAP if you want to
drop

Creating team for your project.

Two TA: Wendi Ren and Hua Jiang.

Please be nice to our TA team.

Office hours will be started from next week.
A schedule is posted on the website.
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Why Linear Algebra?

» Linear algebra provides a way of compactly representing and
operating on sets of linear equations

4x, —5x,=—13 —2x,+3x,=9
can be written inthe formof Ax = b

a=575) p=[y

» A € R™*"denotes a matrix with m rows and n columns, where
elements belong to real numbers.

» x € R™ denotes a vector with n real entries. By convention an
n dimensional vector is often thought as a matrix with n rows
and 1 column.



Linear Algebra Basics

Transpose of a matrix results from flipping the rows and
columns. Given A € R™*™, transpose is AT € R™™

For each element of the matrix, the transpose can be written

The following properties of the transposes are easily verified
e (AT =4
e (AB)'= BTAT
o (A+B)'= AT+BT

A square matrix A € R™" is symmetricif A = ATand itis
anti-symmetricif A = — A" . Thus each matrix can be written
as a sum of symmetric and anti-symmetric matrices.
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Norms

» Norm of a vector ||x|| is informally a measure of the “length”
of a vector

» More formally, a norm is any function f: R® = R that satisfies
¢ For all x € R™, f(x) 2 0 (non-negativity)
¢ f(x) =0is and only if x = 0 (definiteness)
o Forxe R™, te R, f(tx) = |t|f (x) (homogeneity)
o Forallx,y € R"*, flx +y)<f(x)+fly) (triangle inequality)

» Common norms used in machine learning are

e £, norm

o |lxll; = 2=y %



Norms

o £, norm

o llxlly = Xizqlx;l

e £, norm
o |Ixle = max;|x;|

» All norms presented so far are examples of the family of £,
norms, which are parameterized by a real numberp 21

o [Ixll, = Zizalx:]P)7

» Norms can be defined for matrices, such as the Frobenius
norm.

o Ally = (SR, 37, A= Er(ATA)



Vector Norm Examples

T2 + x5
Vi + a3




Special Matrices

The identity matrix, denoted by | € R™*™ is a square matrix
with ones on the diagonal and zeros everywhere else

A diagonal matrix is matrix where all non-diagonal matrices are
0. This is typically denoted as D = diag(d,, d,,d,,...,d,)

Two vectors x, y € R™ are orthogonal if x. y = 0. A square
matrix U € R™" is orthogonal if all its columns are orthogonal
to each other and are normalized

It follows from orthogonality and normality that
o UTU=1=UUT
o [[Ux]l; = llxll;
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Multiplications

» The product of two matrices A € R™*"and B € R™"*Pjs given
by C€ R™P, where C;; = Xy =1 AyBy;

» Given two vectors x, y € R", the term x"y (also x - y) is called
the inner product or dot product of the vectors, and is a real
number given by )i, x,y; . For example,

Y1

yZ] = ?:1 XiYVi
Y3

xTy=[x; x; X5

» Given two vectors x € R", y € R™, theterm xy " is called the
outer product of the vectors, and is a matrix given by
(xy)' =x;y; .Forexample,



Multiplications

X4 X1Y1 X1Y2 X1YV3
xy'= [x_z] Vi Y2 V3] = |X2V1 XY2 X)Y3
X3 X3Y1 X3¥2 X33

» The dot product also has a geometrical interpretation, for
vectors in X,y € R? with angle & between them

A

x -y = |x||y| cosf

which leads to use of dot product for testing orthogonality,
getting the Euclidean norm of a vector, and scalar projections.



Inner Product Properties

The inner product is a measure of correlation between two vectors,

scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors




Inner Product Properties

The inner product is a measure of correlation between two vectors,
scaled by the norms of the vectors
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Linear Independence and Matrix Rank

» Aset of vectors {x,, x,,...,x,} € R™ are said to be (linearly)
independent if no vector can be represented as a linear

combination of the remaining vectors. That is if

n-1
X, = z ax;
i=1
for some scalar values @, a,, ... € R then we say that the vectors

are linearly dependent; otherwise the vectors are linearly
independent

» The column rank of a matrix A € R™*" is the size of the
largest subset of columns of A that constitute a linearly

independent set. Row rank of a matrix is defined similarly for
rows of a matrix.



Matrix Rank: Examples

What are the ranks for the following matrices?

123
A =

2 4 6

102
B=|210

3 2 1



Matrix Inverse

» The inverse of a square matrix A € R™ " is denoted A~ and
is the unique matrix such that A=14 =1 = 4471

» For some square matrices A~! may not exist, and we say that A

is singular or non-invertible. In order for A to have an inverse,
A must be full rank.

» For non-square matrices the inverse, denoted by A* ,is given
by AT = (ATA)71AT called the pseudo inverse
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Matrix Trace

» The trace of a matrix A € R™*", denoted as tr(A4), is the sum
of the diagonal elements in the matrix

tr(A) = Z?=1 Ay

¢ The trace has the following properties
o For A€ R™" tr(A) =trAT
o ForA,Be R tr(A + B) = tr(A) + tr(B)
o ForAe R te R, tr(tA) = t - tr(4)

e For A, B, C such that ABC is a square matrix tr(ABC) =
tr(BCA) = tr(CAB)

¢ The trace of a matrix helps us easily compute norms and
eigenvalues of matrices as we will see later



Matrix Determinant

The determinant of a square matrix A, denoted by | A|, is defined as

det (A) = zn: (—1)"t aqj Mij

j=1

where M;; is determinant of matrix A without the row ¢ and column j.

Fora2x2matrixA=(a b)

c d

|A| = ad — b




Properties of Matrix Determinant

Basic Properties

o |A|l = 'AT'

o |4B]| = |4] |B]

o |A| =0 if and only if A is not invertible
o If A is invertible, then |[A™}| = ﬁ
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Eigenvalues and Eigenvectors

» Given a square matrix A € R™ ™ we say that A € Cis an
eigenvalue of Aand x € C is an eigenvector if

Ax = Ax, x #0

» Intuitively this means that upon multiplying the matrix A with a
vector x, we get the same vector, but scaled by a parameter A

» Geometrically, we are transforming the matrix A from its
original orthonormal basis/co-ordinates to a new set of
orthonormal basis x with magnitude as 4



Computing Eigenvalues and

Fiocanviartnrc
» We can rewrite the original equation in the following manner
Ax = Ax, x #0
= (Al —A)x =0, x#0

» This is only possible if (Al — A) is singular, thatis |(AI —A)| =
0.

» Thus, eigenvalues and eigenvectors can be computed.
o Compute the determinant of A — Al.
« This results in a polynomial of degree n.
¢ Find the roots of the polynomial by equating it to zero.
« The nroots are the n eigenvalues of A. They make A — Al singular.
» For each eigenvalue 4, solve (A — Al)x to find an eigenvector x



Eigenvalue Example

Eigenvalues

1 2] A4=-5
S e

Determine eigenvectors: Ax = AX
X +2x, = Ax, (I-A)x,+2x,=0
—
3x,—4x, = Ax, 3x,—(4+A)x, =0

Eigenvector for A, = -5
6x,+2x,=0 -0.3162 1
= X= or X, =
3x,+x,=0 0.9487 -3
Eigenvector for A, = 2
-x,+2x,=0 0.8944 2
= X, = or X, =
3x,—6x,=0 - 10.4472 -1

Slide credit: Shubham Kumbhar



Matrix Eigen Decomposition

» All the eige columns can be written together as AX = XA
where the diagonals of X are the eigenvectors of A, and Ais a
diagonal matrix whose elements are eigenvalues of A

» If the eigenvectors of A are invertible, then 4 = XAX ™1

» There are several properties of eigenvalues and eigenvectors
o Tr(4) = Xic1
o Al = ITic1 4
¢ Rank of A is the number of non-zero eigenvalues of A
e If Ais non-singular then 1/A; are the eigenvalues of A1

¢ The eigenvalues of a diagonal matrix are the diagonal elements
of the matrix itself!
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Singular Value Decomposition

n: instances

X d: dimensions
nxd X is a centered matrix
U,xn — unitary matrix » UxUT =1
X = UZVT Yuxa — diagonal matrix

Vixg — unitary matrix >V x VI =]






Covariance matrix:

X =Uzv"
- ve'utuzv®  verv?
XTx - n n




vy 32
A= =

=V —VT
n n
2 2
AV =V —VTy =V —
n n

According to Eigen-decomposition definition =P AV = AV

2
o; . . .
A = 7‘ =» The eigenvalues of covariance matrix

I is the right singular vectors (Principal directions)



Geometric Meaning of SVD

A~

Image Credit: Kevin Binz
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