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What is Dimension reduction? 

• The process of reducing the number of features 
under the consideration: 
– One can combine, transform or select features 
– One can use linear and nonlinear operations 



Applications of the dimension 
reduction 

• The dimension-reduced data can be used for: 
– Visualizing, exploring and understanding the data 

– Aggregating weak signals in the data 

– Cleaning the data 

– Speeding up subsequent learning tasks 

– Building simpler model later 

 

• Key questions of a dimensionality reduction algorithm 
– What is the criterion for carrying out the reduction 

process? 

– What are the algorithm steps? 
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PCA: Dimension reduction by 
capturing variation 

• There are many criteria, geometric based, information 
theory based, etc.  
 

• One criterion: want to capture variation in data 
– Variations are “signals” or “useful” information in the data 
– Need to normalize each variable first 

 
• In the process, also discover variables or dimensions highly 

correlated 
– Represent highly related phenomena 
– Combine them to form a stronger signal 
– Lead to simpler presentation 



Capture Variation in Data 



Two perspective of Principal 
Component Analysis (PCA) 

• Orthogonal projection of the data onto a lower-
dimension linear space that 
– Maximize variance of projected data 
– Minimize mean squared distance between the data 

points and projections. 

Maximize the variance 

Minimize mean squared distance 
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Formulating the problem 

Given 𝑛 data points, *𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛+ ∈ 𝑅
𝑑, with 

their mean 𝑢 =
1

𝑛
 𝑥𝑖
𝑛
𝑖=1  

Find a direction w ∈ 𝑅𝑑, where w =  ω𝑗
2

𝑗∈𝑑 = 1 

We constrain the norm of 𝑤 to be equal to 1, to avoid 
having very large variance in each new dimension. 



Formulating the problem 

Given 𝑛 data points, *𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛+ ∈ 𝑅
𝑑, with 

their mean 𝑢 =
1

𝑛
 𝑥𝑖
𝑛
𝑖=1  

w =  ω𝑗
2

𝑗∈𝑑

= 1 

Optimization target: the variance of the data along 

direction 𝑤 is maximized. 𝑚𝑎𝑥
1

𝑛
 (𝑥𝑖𝑤 − 𝑢𝑤)

2𝑛
𝑖=1  

Variance in new feature space. 



Formulate it as an optimization 
problem 

Manipulate the objective with linear algebra 

Covariance matrix 



Equivalence to the eigenvalue problem 

• Claim max𝑤𝑇𝐶𝑤  
 

• Form lagrangian function of the optimization 
problem 𝐿 𝑤, 𝜆 = 𝑤𝑇𝐶𝑤 + 𝜆(1 − 𝑤𝑇𝑤) 
 

• If 𝑤 is a maximum of the original optimization 
problem, then there exists a 𝜆, where (w, 𝜆) is a 
stationary point of L w, 𝜆  
 

• This implies that  



Eigen value problem 

• Eigen-value problem 
– Given a symmetric matrix 𝐶 ∈ 𝑅𝑑×𝑑 

– Find a vector w ∈ 𝑅𝑑  and 𝑤 = 1 
– Such that 𝐶𝑤 = 𝜆𝑤 

 
 

• There will be multiple solutions of the 
eigenvectors 𝑤1, 𝑤2, … of 𝐶 corresponding to the 
largest eigenvalue 𝜆1, 𝜆2, … , 𝜆𝑑 
– They are ortho-normal: 𝑤𝑖

𝑇𝑤𝑖 = 1,𝑤𝑖
𝑇𝑤𝑗 = 0 

 



Principle direction of the data 



Variance in the principle direction 

• Principle direction 𝑤 satisfies  
𝐶𝑤 =  𝜆𝑤 = 𝑤𝜆 

 
• Variance in principle direction is 

𝑤𝑇𝐶𝑤 = 𝑤𝑇𝑤𝜆 = 𝜆 

Eigen value 



Multiple principle directions 

• Directions 𝑤1, 𝑤2, … which has 
– The largest variances 

– But are orthogonal to each other 

 

 

• Take the eigenvectors 𝑤1, 𝑤2, … of 𝐶 corresponding to 
– The largest eigenvalue 𝜆1 

– The second largest eigenvalue 𝜆2 

– … 

 



Extra principle directions 



Remember the two perspectives 

Maximize the variance 

Minimize mean squared distance 



Relations between principle 
components 

• Principle component #1: points in the direction of 
largest variance. 
 

• Each subsequent principle component 
– Is orthogonal to the previous ones, and 
– Points in the directions of the largest variance of the 

residual subspace. 



The PCA algorithm 

Given 𝑛 data points, *𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛+ ∈ 𝑅
𝑑, with 

their mean 𝑢 =
1

𝑛
 𝑥𝑖
𝑛
𝑖=1  

Step 1: Estimate the mean and covariance matrix from data, 

𝐶 =
1

𝑛
 (𝑥𝑖−𝑢)

𝑇(𝑥𝑖−𝑢)
𝑛
𝑖=1  

Step 2: Take the eigenvectors 𝑤1, 𝑤2, … of 𝐶 corresponding to 
the largest eigenvalue 𝜆1, the second largest eigenvalue 𝜆2, … 

Step 3: Compute reduced representation 

𝑧𝑖 = (
(𝑥𝑖−𝑢1)

𝜎1
𝑤1 
(𝑥𝑖−𝑢2)

𝜎2
𝑤2 … ) 

𝑧 = 𝑛 × 𝑘 
𝑘 < 𝑑 
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Singular Value Decomposition 









• In fact, using the SVD to perform PCA makes 
better sense numerically than performing the 
covariance matrix, since the calculating 𝑥𝑇𝑥 can 
cause loss of precision. 



Are principal components good for 
classification? 



Why PCA potentially works in 
classification? 

• The dimension with the largest variance 
corresponds to the dimension and thus 
encodes the most information (information 
theory). 

• The smallest eigenvectors often simply 
represent noise components. 


