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Outline 

• Overview 

• Gaussian mixture model 

• The expectation-maximization algorithm 



Recap 

Conditional Probabilities: 

𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝(𝐴) 

Bayes rule: 

𝑝 𝐴|𝐵 =
𝑝(𝐴, 𝐵)

𝑝(𝐵)
=
𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝(𝐵)
 

𝑝 𝐴 = 1 = 𝑝(𝐴 = 1, 𝐵𝑖)

𝐾

𝑖=1

= 𝑝 𝐴 = 1 𝐵𝑖 𝑝(𝐵𝑖)

𝐾

𝑖=1

 



A simple example 

𝑃 𝑇𝑜𝑚𝑜𝑟𝑟𝑜𝑤 = 𝑅𝑎𝑖𝑛𝑦 = 



Hard clustering can be difficult 

• Hard clustering: K-means, hierarchical clustering, 
DMSCAN 



Toward soft clustering 

• K-means 
– Hard assignment: each data point belongs to only one cluster 

 
• Mixture modeling 

– Soft assignment: probability that a data point belongs to a 
cluster 



Comparison 

• Hard clustering 
– It is an assignment of 𝑥𝑛 to a single cluster. It selects a 

mode of the conditional distribution 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑧𝑛 =
𝑘|𝑥𝑛) 

• Soft clustering 
– It assigns a probability 𝜋𝑛𝑘 for data point 𝑥𝑛 to each 

cluster 𝑘. 
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Gaussian Distribution 

𝑁 𝜇, 𝜎 =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2  

1-D Gaussian 2-D Gaussian 



What is Gaussian? 

• For d dimensions, the Gaussian distribution of a vector 
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇is defined by  

𝑁 𝑥 𝜇, Σ =
1

2𝜋𝑑/2 |Σ|
exp (
1

2
𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇 ),  

where 𝜇 is the mean, Σ is the covariance matrix of the Gaussian. 



Gaussian Mixture Models (GMM) 

• Formally a mixture model is the weighted sum of a number of probability 
density function (pdf), where the weights are determined by a 
distribution, 𝜋 

𝑝 𝑥 =  𝜋0𝑓0 𝑥 + 𝜋1𝑓1 𝑥 +⋯+ 𝜋𝑘𝑓𝑘 𝑥 , 

where  𝜋𝑖
𝑘
𝑖=0 = 1 

𝑝 𝑥 =   𝜋𝑖𝑓𝑖 𝑥

𝑘

𝑖=0

 

𝜋𝑖 is the unknown probability of selecting component 𝑖 



Some notes 

• Is summation of a bunch of Gaussians a Gaussian 
itself? 
– 𝑝(𝑥) is a Probability density function or it is also 

called a marginal distribution function 
– 𝑝(𝑥)=the density of selecting a data point from the 

pdf which is created from a mixture model. Also, we 
know that the area under a density function is equal 
to 1. 



Mixture models are generative 

• Generative simply means dealing with joint probability 𝑝 𝑥, 𝑧  
• Let’s say 𝑓(. ) is a Gaussian distribution 

𝑝 𝑥 =   𝜋𝑘𝑓𝑘 𝑥

𝐾

𝑘=0

 

𝑝 𝑥 =  𝜋0𝑁(𝑥|𝑢0, 𝜎0) + 𝜋1𝑁(𝑥|𝑢1, 𝜎1) + ⋯+ 𝜋𝑘𝑁(𝑥|𝑢𝑘, 𝜎𝑘) 

𝑝 𝑥 =   𝜋𝑘𝑁(𝑥|

𝐾

𝑘=0

𝑢𝑘 , 𝜎𝑘) 

𝑝 𝑥 =   𝑝(𝑧𝑘)𝑝(𝑥|𝑧𝑘) 

𝐾

𝑘=0

 

𝑝 𝑥 =   𝑝(𝑥, 𝑧𝑘) 

𝐾

𝑘=0

 

𝑧𝑘 is component 𝑘 



What is soft assignment? 

• What is the probability of a data point 𝑥 in each 
component? 

• How many components we have here? 
• How many probability? 
• What is the sum of the 3 probabilities for each data point? 

 



How to calculate the probability of 
data points in the first component? 

𝑝 𝑥 =  𝜋0𝑁(𝑥|𝑢0, 𝜎0) + 𝜋1𝑁(𝑥|𝑢1, 𝜎1)  + 𝜋2𝑁(𝑥|𝑢2, 𝜎2) 



Inferring cluster membership 

• We have representations of the joint 𝑝 𝑥, 𝑧𝑛𝑘 𝜃  and the marginal, 
𝑝 𝑥 𝜃  
 

• The conditional of 𝑝 𝑥, 𝑧𝑛𝑘 𝜃  can be derived using Bayes rule. 
– The responsibility that a mixture component takes for explaining an 

observation x. 

𝜏 𝑧𝑛𝑘 = 𝑝 𝑧𝑛𝑘 𝑥 =
𝑝 𝑧𝑛𝑘 𝑝(𝑥|𝑧𝑛𝑘)

 𝑝 𝑧𝑖𝑗 𝑝(𝑥|𝑧𝑖𝑗)
𝐾
𝑗=1

=
𝜋𝑘𝑁(𝑥|𝑢𝑘 , 𝜎𝑘)

 𝜋𝑗𝑁(𝑥|𝑢𝑗 , 𝜎𝑗)
𝐾
𝑗=1

 

𝑝(𝑥|𝑧𝑛𝑘) = 𝑁(𝑥|𝑢𝑘 , 𝜎𝑘) 

𝑧𝑛𝑘 represents the latent component indicator 
or latent cluster 𝑘 for data point 𝑥𝑛 



Mixtures of Gaussians 

• What is the probability of picking a mixture component (Gaussian 
model)? 𝑝 𝑧𝑘 = 𝜋𝑘 
 

• What is the probability of picking data from that specific mixture 
component? 𝑝(𝑥|𝑧𝑘) 

Note 𝑧𝑘 is a latent variable. We 
only observe 𝑥, but 𝑧𝑘 is hidden 

𝑝 𝑥, 𝑧𝑘 = 𝑝 𝑥 𝑧𝑘 𝑝(𝑧𝑘) 

Generative model, because of joint distribution 

𝑝 𝑥, 𝑧𝑘 = 𝜋𝑘𝑁(𝑥|𝑢𝑘 , 𝜎𝑘) 



What are GMM parameters? 

• 𝑝 𝑧𝑘 𝜃 = 𝜋𝑘      select a mixture component with probability 𝜋𝑘 
• 𝑝 𝑥 𝑧𝑘 = 𝑁(𝑥|𝑢𝑘 , 𝜎𝑘) sample from the component’s Gaussian. 

Mean 𝑢𝑘, Variance: 𝜎𝑘, Proportion: 𝜋𝑘  

𝑝 𝑥, 𝑧𝑘 = 𝑝 𝑥 𝑧𝑘 𝑝(𝑧𝑘) = 𝜋𝑘𝑁(𝑥|𝑢𝑘 , 𝜎𝑘) 



GMM with graphical model concept 

𝑍𝑘 

N 

𝑋𝑛 

𝜋𝑘 

𝜇𝑘 

Σ𝑘 

𝑝 𝑧𝑛𝑘 𝜋𝑘 = 𝜋𝑘
𝑧𝑛𝑘

𝐾

𝑘=1
 

𝑝 𝑥 𝑧𝑛𝑘 , 𝜋, 𝜇, Σ = 𝑁 𝑥 𝜇𝑘 , Σ𝑘
𝑧𝑛𝑘

𝐾

𝑘=1
 

𝜋1 𝜋2 𝜋3 𝑥 

Given 𝑧, 𝜋, 𝜇, and Σ, what is the probability 
of x in component k 

𝑍𝑘 is the latent variable 
1-of-K representation 

𝜃 



Why having “Latent variable” 

• A variable can be unobserved (latent) because:  
it is an imaginary quantity meant to provide some simplified and 
abstractive view of the data generation process. 
• e.g., speech recognition models, mixture models (soft clustering)… 

it is a real-world object and/or phenomena, but difficult or impossible 
to measure 
• e.g., the temperature of a star, causes of a disease, evolutionary ancestors … 

it is a real-world object and/or phenomena, but sometimes wasn’t 
measured, because of faulty sensors, etc. 

   

• Discrete latent variables can be used to partition/cluster data into 
sub-groups. 

• Continuous latent variables (factors) can be used for dimensionality 
reduction (factor analysis, etc). 



Latent variable representation 

p x|𝜃 = 𝑝(𝑥, 𝑧𝑛𝑘|𝜃)
𝑘

= 𝑝(𝑧𝑛𝑘|𝜃)𝑝 𝑥 𝑧𝑛𝑘 , 𝜃
𝑘

=  𝜋𝑘𝑁(𝑥|𝜇𝑘 , Σ𝑘)

𝐾

𝑘=0

 

𝑝(𝑧𝑛𝑘|𝜃) = 𝜋𝑘
𝑧𝑛𝑘

𝐾

𝑘=1
 𝑝 𝑥 𝑧𝑛𝑘 , 𝜃 = 𝑁 𝑥 𝜇𝑘 , Σ𝑘

𝑧𝑛𝑘
𝐾

𝑘=1
 

Why having the latent variable? 

The distribution that we can model using a mixture of Gaussian 
components is much more expressive than what we could have modeled 
using a single component. 



Define latent variable 

For a point 𝑥𝑖, let the cluster to which that point belongs be labeled 𝑧𝑖.  
𝑧𝑖 is a latent variable, which is unobserved. 

The density of a univariate Gaussian Mixture Model with three 
Gaussian mixture components, each with their own mean and 
variance terms (K = 3, d = 1). [Source: http://prateekvjoshi.com] 



Multimodal distribution 

• What if we know the data consists of a few Gaussians. 

 

• What if we want to fit parametric models? 



Gaussian mixture model 

• A density model 𝑝(𝑥) may be multi-modal: model it as a mixture of uni-
modal distribution (e.g. Gaussians). 
 

• Consider a mixture of 𝐾 Gaussians 
 

𝑝 𝑥 =   𝜋𝑘𝑁(𝑥|

𝐾

𝑘=0

𝑢𝑘 , 𝜎𝑘) 

Learn mean 𝑢𝑘 , Variance: 𝜎𝑘, Proportion: 𝜋𝑘  
 



Learning GMM parameters 

• Maximum likelihood estimation 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑥 𝜃 = 𝑝(𝑥𝑖|𝜃)

𝑁

𝑖=1

=  𝜋𝑘𝑁(𝑥𝑖|𝑢𝑘 , 𝜎𝑘) 

𝐾

𝑘=1

𝑁

𝑖=1

 

log (𝑝 𝑥 𝜃 =   ln * 𝜋𝑘𝑁(𝑥𝑖|𝑢𝑘 , 𝜎𝑘) 

𝐾

𝑘=1

+

𝑁

𝑖=1

 

log(𝑝 𝑥 𝜃 =   log * 𝑝 𝑥𝑖 𝑧𝑘 |𝑝(𝑧𝑘) 

𝐾

𝑘=1

+

𝑁

𝑖=1

 𝒛𝒏𝒌 Latent variable 

The fundamental difficulty 
is that the parameters are 
coupled. 

Now we assume that 𝜏 𝑧𝑛𝑘 = 𝑝 𝑧𝑛𝑘 𝑥  is known.  



Estimate the mean in GMM 



Estimate the variance in GMM 



Estimate the mixing term in GMM 



Parameter results 

Note that all these based on the assumption that 𝜏 𝑧𝑛𝑘  is known, which is our 
guess. How to guess? 

Means: 

Variance: 

Mixing term: 
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Estimating GMM parameters with 
Expectation-Maximization (EM) 

• EM is a general algorithm to deal with hidden variable. 
 

• Two steps: 
– E-step: Fill in hidden values using inference 
– M-step: Apply standard MLE method to estimate parameters 

 
• EM always converges to a local minimum of the likelihood. 



E-step for GMM 

Posterior expectation 𝐸 𝑧𝑛𝑘 ∝ 𝜋𝑘𝑁 𝑥𝑛 𝑢𝑘 , 𝜎𝑘 , posterior probability of 
data 𝑥𝑛 belonging to cluster 𝑘 

𝐸 𝑧𝑛𝑘 =
𝜋𝑘𝑁 𝑥𝑛 𝑢𝑘 , 𝜎𝑘

 𝜋𝑗𝑁 𝑥𝑛 𝑢𝑗 , 𝜎𝑗
𝐾
𝑗=1

 

We assume that 𝜃𝑡 = (𝜋𝑘, 𝑢𝑘 , 𝜎𝑘) are known, and then take the expectation 
of the latent variable with the current values of our parameters. 



M-step for GMM 

• 𝑢𝑘
𝑡+1 =

 𝜏(𝑧𝑛𝑘)
𝑡𝑥𝑛

𝑁
𝑛=1

 𝜏(𝑧𝑛𝑘)𝑡
𝑁
𝑛=1

 

• Σ𝑘
𝑡+1 =

1

 𝜏(𝑧𝑛𝑘)𝑡
𝑁
𝑛=1

 𝜏(𝑧𝑛𝑘)
𝑡𝑁

𝑛=1 𝑥𝑛 − 𝑢𝑘
𝑡 𝑥𝑛 − 𝑢𝑘

𝑡 𝑇 

• 𝜋𝑘
𝑡+1 =

 𝜏(𝑧𝑛𝑘)
𝑡𝑁

𝑛=1

𝑁
 

 
 

Based on the assumption that 𝜃𝑡 = (𝜋𝑘, 𝑢𝑘 , 𝜎𝑘), we need to update 𝜃𝑡 with 
𝜃𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄 𝜃𝑡 ). 

𝑄 𝜃𝑡 =  𝐸 𝑧𝑛𝑘 𝑙𝑜𝑔𝜋𝑘 + 𝐸 𝑧𝑛𝑘 𝑙𝑜𝑔𝑁 𝑥𝑛 𝑢𝑘 , 𝜎𝑘

𝐾

𝑘=1

𝑛

𝑖=1

 



Expectation-Maximization for GMMs 

• Initialize 𝜋𝑘 , 𝑢𝑘 , 𝜎𝑘 arbitrarily. 

 

• Alternate until convergence 
– (E-step) Expectation step: compute soft class 

membership, with the current parameters: 
𝜏𝑛𝑘 = 𝜏 𝑧𝑛𝑘 = 𝑝 𝑧𝑛𝑘 𝑥, 𝜋𝑘 , (𝑢𝑘 ,  𝜎𝑘)  

 

– (M-step) Maximization step: Update parameters 
by plugging in 𝜏𝑛𝑘  (our guess) 



EM for GMM example 



EM for GMM example 
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EM for GMM example 



EM for GMM example 



General form of EM 

• Given a joint distribution over observed variables and latent 
variables: 𝑝 𝑥, 𝑧 𝜃  

• Want to maximize: 𝑝 𝑥 𝜃  

1. Initialize parameters: 𝜃𝑜𝑙𝑑  

2. E-step, evaluate 𝑝 𝑧 𝑥, 𝜃𝑜𝑙𝑑  

3. M-step, re-estimate parameters (based on expectation of 
complete-data log likelihood): 

𝜃𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑝(𝑧|𝑥, 𝜃
𝑜𝑙𝑑)ln 𝑝(𝑥, 𝑧|𝜃) 



Comparison between GMM and K-
Means 

• Soft clustering and hard clustering 
– K-means assigns data point to a single cluster, while GMM 

assigns probability of observations belonging to each cluster. 

 
• GMM assumes Gaussian model with joint probability, while 

K-means has no underlying probability model. 
 

• Relationship between GMM and K-Means 

– K-means, unlike GMM, learns equal-sized cluster, where 𝜋𝑘 =
1

𝐾
 

– In GMM, we set 𝜋𝑘 =
1

𝐾
 and set the largest probability to 1 and 

the rest to 0. Then GMM is equivalent to K-means. 
 

 



An example of comparing K-means 
with EM 

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm 


