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Recap

Conditional Probabilities:

p(A,B) = p(A|B)p(B) = p(B|A)p(4)

Bayes rule:

p(4,B) _ p(B|A)p(A)
p(B) p(B)

p(A|B) =

K K
pUA=1 =) p(A=1B)= ) p(4=1B)p(E)
i=1 i=1



A simple example

Tomorrow=Rainy

Tomorrow=Cold

Today=Rainy

4/9

2/9

Today=Cold

2/9

1/9

P(Tomorrow = Rainy) =




Hard clustering can be difficult

Hard clustering: K-means, hierarchical clustering,
DMSCAN




Toward soft clustering

* K-means
— Hard assignment: each data point belongs to only one cluster

* Mixture modeling

— Soft assignment: probability that a data point belongs to a
cluster




Comparison

* Hard clustering

— It is an assignment of x,, to a single cluster. It selects a

mode of the conditional distribution argmax p(z,, =
klxy)

* Soft clustering

— It assigns a probability ,,;, for data point x,, to each
cluster k.
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* Overview
* Gaussian mixture mode| <=
* The expectation-maximization algorithm



Gaussian Distribution
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What is Gaussian?

For d dimensions, the Gaussian distribution of a vector
x = (x1,x2,...,x™)Tis defined by

_ 1 1 _ NTy=1(. _
N(XLU, Z) _ an/zm eXp(Z (.X' ,Ll) ) (x :u));
where u is the mean, X is the covariance matrix of the Gaussian.
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Gaussian Mixture Models (GMM)

Formally a mixture model is the weighted sum of a number of probability
density function (pdf), where the weights are determined by a
distribution,

p(x) = mofo(x) + 1y f1(x) + -+ + mx fie (),
where ¥'¥_ m; =1
k

p() = ) mfi(x)

N/

1; is the unknown probability of selecting component i



Some notes

 |s summation of a bunch of Gaussians a Gaussian
itself?

— p(x) is a Probability density function or it is also
called a marginal distribution function

— p(x)=the density of selecting a data point from the
pdf which is created from a mixture model. Also, we
know that the area under a density function is equal
to 1.



Mixture models are generative

* Generative simply means dealing with joint probability p(x, z)
* Let’ssay f(.) is a Gaussian distribution

K

p() = ) mefi®)

k=0
p(x) = myN(x|ugy, 0p) +K7T1N(x|u1,al) + -+ N (x| Uy, 0% )

p() = ) mN (x| e, )

k=0

K
p(x) = z p(zk)p(x|zk) Zy is component k
k=0

K
p() = D P67
k=0



What is soft assighnment?

A
IVZAUAN

0y, T3

What is the probability of a data point x in each
component?

How many components we have here?
How many probability?
What is the sum of the 3 probabilities for each data point?



How to calculate the probability of
data points in the first component?

p(x) = moN(x|ug, 0¢) + myN(x|ug,01) + mN(x|uy,03)

Let’s calculate the responsibility of the first component among the rest

Let’s call that 7,

N (X |ug, 09)mg

o= N(X|ug, 09)o + N(X|1y,01)m1 + N(X|ptp, 03)7,
o p(x]20)p(2o)
" p(xlzo)p(20) + p(xlz1)p(21) + p(x12:)p(21)

S p(x,Zp) zp(szo) = (2o |%)
C Yz P(X) 0




Inferring cluster membership

* We have representations of the joint p(x, z,,;|6) and the marginal,

p(x|0)

* The conditional of p(x, z,,;|6) can be derived using Bayes rule.

— The responsibility that
observation x.

p

T(an) = p(anlx) =

a mixture component takes for explaining an

Znk represents the latent component indicator
or latent cluster k for data point x,,

(x|znk) = N(x|ug, o)

D(Zni )P (X | Zni) T N (x|ug, oy)

K ip(zij)p(xlz)  Xieq N (x|, 05)




Mixtures of Gaussians

What is the probability of picking a mixture component (Gaussian
model)? p(z;) = my

What is the probability of picking data from that specific mixture
component? p(x|zg)
Note z, is a latent variable. We
only observe x, but z, is hidden

p(x,z,) = p(x|zx)p(zy) p(x,z) = N (x|ug, o)

Generative model, because of joint distribution
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What are GMM parameters?

Mean u,, Variance: gy, Proportion: 1,

p(x,zx) = p(xlzi)p(z) = 7 N(x|uy, o%)

* p(z,|0) =m, select a mixture component with probability
* p(x|z;) = N(x|uy, g ) sample from the component’s Gaussian.

AN




GMM with graphical model concept
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. znk  Zy is the latent variable
p(an |T[k) ‘ ‘ k=1nk 1-of-K representation

Given z,m, u,and X, what is the probability
of x in component k
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Why having “Latent variable”

* Avariable can be unobserved (latent) because:

O itis an imaginary quantity meant to provide some simplified and
abstractive view of the data generation process.
* e.g., speech recognition models, mixture models (soft clustering)...

O it is a real-world object and/or phenomena, but difficult or impossible

to measure
* e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

O itis a real-world object and/or phenomena, but sometimes wasn’t
measured, because of faulty sensors, etc.

* Discrete latent variables can be used to partition/cluster data into

sub-groups.
e Continuous latent variables (factors) can be used for dimensionality

reduction (factor analysis, etc).



Latent variable representation

K

p(x|6) = zkp(x; Znk|0) = zkp(znk|9)P(x|an: 0) = z T N (x| g, Zi)

k=0

K K 2
P(zx10) = 1_[ nznk p(x|zng, 0) = szl(N(X“lk;Zk))

k=1

Why having the latent variable?

The distribution that we can model using a mixture of Gaussian
components is much more expressive than what we could have modeled
using a single component.



Define latent variable

For a point x;, let the cluster to which that point belongs be labeled z;.
z; is a latent variable, which is unobserved.

The density of a univariate Gaussian Mixture Model with three
Gaussian mixture components, each with their own mean and
variance terms (K =3, d = 1). [Source: http://prateekvjoshi.com]



Multimodal distribution

What if we know the data consists of a few Gaussians.

What if we want to fit parametric models?
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Gaussian mixture model

e Adensity model p(x) may be multi-modal: model it as a mixture of uni-
modal distribution (e.g. Gaussians).

* Consider a mixture of K Gaussians

K

p(X) = Z Tl,'kN(Xl Uy, O'k) N (U2, 23) | N (u1,2,)

— 1

mixing mixture
proportion | | Component

Learn mean uy, Variance: gy, Proportion: 1,



Learning GMM parameters

Maximum likelihood estimation

argmax p(x|6) = ]_[p(xlw) = ]_[ Z N Gt )

i=1 k=1

The fundamental difficulty

N K
is that the parameters are
log (p(.'Xle) = ZIH{Z Coupled
i=1 k=1 '

log(p(x|0) = z log{z p(x;|zi)|p(2) } Znx Latent variable
i=1

Now we assume that 7(z,,;,) = p(z,x|x) is known.



Estimate the mean in GMM

N K
Inp(z|m, u, ¥) = Z In {Z TN (Zn |k, E;\.)}
=1

dlnp(x|m, p, X) TN (Tp |k, Lk) 1
ot Zl 3 N (aality, 5 F T
= Z’r (2ni) S5 (@ — ) = 0
n=1
N
L) En,:1 T("’HA)J n
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Estimate the variance in GMM

Inp(x|m, p, X) Z In {Z TN (T | g, Xk }
n=1

'\,i"
1AV
4

Zk — N . Z T(E“k)(;fn — ;_f.k)(;fn . ‘Uﬁl_ )'1‘
2 n=1T(Znk) 121




Estimate the mixing term in GMM

K
Inp(z|m, @, X) + A (Z T — l)

k=1

T;L\ |;1A k)
0 = A
Z o, Bj )+

N

Z;L— 1 T (an)
N

T =




Parameter results

N
Zn:l T(z“-‘i-’ )J:H

Means: [l = N
Z;’l:l T('?:Hﬁ?)
]_ I\'r
Variance: | X = N Z T(z“g;)(;f:u — I-LL-)(I-:-z. _ }-LA-.)I
Zn.:l T(z?'lk) n=1
N
Mixing term: T = Zn.:l T(an)
| N

Note that all these based on the assumption that 7(z,,;) is known, which is our
guess. How to guess?
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Estimating GMM parameters with
Expectation-Maximization (EM)

* EMis a general algorithm to deal with hidden variable.

* Two steps:
— E-step: Fill in hidden values using inference
— M-step: Apply standard MLE method to estimate parameters

 EM always converges to a local minimum of the likelihood.




E-step for GMM

We assume that 8 = (1, uy, 03, ) are known, and then take the expectation
of the latent variable with the current values of our parameters.

Posterior expectation E(z,,;,) « m; N (x,,|uy, oy, ), posterior probability of
data x,, belonging to cluster k
nkN(xnluk) Uk)
E(Z’I’lk) — K
1N (xn |wy, 07)

ﬂ-hi\( n|4u’h Ek)
S N (zalpy, 5)




M-step for GMM

K

n
Q(Ht) — Z z an lognk + E[an]logN(xnluk: Uk)
=1k

Based on the assumption that 8 = (1, uy, 0 ), we need to update 8¢ with
0t = argmax(Q(8Y)).

N
t+1 — Yn=1 T(an)txn
211\1’:1 T(an)t
1

211\1’=1 T(Znk)t

N
t+1 _ Yn=1T(Znk)"
N

[ ] uk

t+1
° Xk = g=1 T(an)t (xp — ukt)(xn — ukt)T

[ ] nk



Expectation-Maximization for GMMs

* Initialize my,, uy, oy arbitrarily.

e Alternate until convergence

— (E-step) Expectation step: compute soft class
membership, with the current parameters:

Tuk = T(Znk) = P(Znelx, Ty, (Ug, o%))

— (M-step) Maximization step: Update parameters
by plugging in 7,,; (our guess)



EM for GMM example

P(y :'|XJ,HI,le,ng,El,:g,:g,pl,Pz,pg)




EM for GMM example

After 1st iteration




EM for GMM example

After 2M jteration




EM for GMM example

After 3" iteration
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EM for GMM example

After 4% jteration




EM for GMM example

After 5th iteration




EM for GMM example

After 6" iteration




EM for GMM example

After 20t iteration




General form of EM

* Given a joint distribution over observed variables and latent
variables: p(x, z|0)

e Want to maximize: p(x|6)

Initialize parameters: 6°!¢
E-step, evaluate p(z|x, 6°'¢)

M-step, re-estimate parameters (based on expectation of
complete-data log likelihood):

"W = argmaxg z p(z|x,8°NInp(x,z|0)



Comparison between GMM and K-
Means

Soft clustering and hard clustering

— K-means assigns data point to a single cluster, while GMM
assigns probability of observations belonging to each cluster.

GMM assumes Gaussian model with joint probability, while
K-means has no underlying probability model.

Relationship between GMM and K-Means

— K-means, unlike GMM, learns equal-sized cluster, where m;, =

2 x|wm

— In GMM, we set T}, = L and set the largest probability to 1 an
the rest to 0. Then GMK/I is equivalent to K-means.
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An example of comparing K-means
with EM

Different cluster analysis results on "mouse” data set:

Original Data k-Means Clustering EM Clustering
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https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
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